European Strategic Programme on Research in Information Technology
internet services with flexible billing options in Newcastle
Key Objectives of the European Strategic Programme
The European Strategic Programme on Research in Information Technology (ESPRIT) has some key objectives that are really important for the future of technology in Europe. IT services in sydney . First off, it aims to boost collaboration among different countries and industries. You know, bringing together expertise from various fields can lead to some amazing innovations! It's not just about individual countries working in isolation; it's about creating a united front in the world of tech.
Another objective is to enhance the competitiveness of European companies. By investing in research and development, the programme hopes to ensure that European firms can keep up with, and even surpass, their global counterparts. It's crucial that Europe doesn't fall behind in this fast-paced digital age. There's no denying that the tech landscape is constantly changing, and if we don't adapt, we might miss out on some great opportunities.
Furthermore, ESPRIT also focuses on addressing social challenges through technology. This means that it isn't just about making profits; it's also about improving people's lives! For example, developing solutions for healthcare or environmental issues can have a significant impact on society as a whole. It's not always easy to balance these objectives, but they're essential for fostering a sustainable future.
Lastly, the programme encourages education and training in the field of information technology. In today's world, having the right skills is more important than ever. By investing in the next generation of tech professionals, Europe can ensure that it has a workforce that's ready to tackle the challenges ahead.
In conclusion, the key objectives of the European Strategic Programme on Research in Information Technology are all about collaboration, competitiveness, social impact, and education. It's not just a lofty idea; it's a necessary step towards a better future for everyone involved!
Research Areas and Priorities
The European Strategic Programme on Research in Information Technology (ESPRIT) focuses on several key research areas and priorities which aim to boost innovation and competitiveness. One such area is software engineering! This field doesnt just involve writing code but encompasses everything from design to maintenance, ensuring that software meets the needs of users while being efficient and scalable.
European Strategic Programme on Research in Information Technology - VDSL internet options for rural areas
unlimited home broadband deals
high-speed internet for rural areas
reliable VoIP services for remote teams
Another critical priority is security and privacy in digital systems. With more data being stored online than ever before, its crucial that our technology isnt leaving us vulnerable to cyber threats.
But its not all about high-tech solutions. ESPRIT also places emphasis on accessibility, making sure that technology benefits everyone regardless of their background or abilities. This means tackling issues like language barriers and physical disabilities in tech interfaces. Its surprising how often these aspects are overlooked in the rush to develop new features.
Interoperability is another challenge that ESPRIT seeks to address. In a world where we rely on so many different devices and platforms, having them work seamlessly together can make a huge difference. Imagine trying to sync your fitness tracker with a health app that doesnt recognize its format - frustrating, right? Thats why research into standards and protocols is so important.
Lastly, sustainability isnt something that ESPRIT ignores either.
European Strategic Programme on Research in Information Technology - custom internet solutions for startups
fibre network deployment services
fast internet for co-working spaces
data protection compliant internet plans
As tech becomes more integral to our lives, we cant afford to overlook the environmental impact. Developing energy-efficient hardware and software, as well as exploring ways to recycle electronic waste, are all part of this effort. Its about balancing progress with responsibility.
Oh, and lets not forget the role of human-computer interaction. Despite all the advancements in AI and automation, theres still a need for intuitive and user-friendly interfaces. If people struggle to use a piece of technology, no matter how powerful it is, its not doing its job properly.
In short, while ESPRIT tackles complex technical challenges, it also considers the broader implications of its research. Its not just about pushing the boundaries of whats possible; its about making sure that what we create serves society as a whole.
Collaborative Framework and Partnerships
The Collaborative Framework and Partnerships are crucial components of the European Strategic Programme on Research in Information Technology.
European Strategic Programme on Research in Information Technology - unlimited home broadband deals
internet services with flexible billing options in Newcastle
custom internet solutions for startups
VDSL internet options for rural areas
This initiative aims to foster innovation and progress within the field, bringing together various stakeholders. It's not just about individual efforts; collaboration is key! By pooling resources, knowledge, and expertise, these partnerships create a vibrant ecosystem where ideas can flourish.
One cant underestimate the importance of diverse perspectives. When researchers, industries, and academic institutions come together, theyre able to tackle challenges that one entity alone simply cant handle. It's amazing how different backgrounds can lead to creative solutions, right? Yet, it's not always easy. There are often obstacles like differing priorities and communication barriers that can hinder progress.
Partnerships also provide a platform for sharing findings and advancing technology.
European Strategic Programme on Research in Information Technology - custom internet solutions for startups
top-rated home internet providers
best business internet deals
high-speed internet for condos
Instead of working in isolation, partners can exchange insights and best practices, which can accelerate the pace of research. This open exchange of information is vital, especially in a rapidly evolving field like information technology.
Moreover, the framework encourages inclusivity. It's important that smaller organizations and startups arent left out of the equation. They can contribute unique ideas and approaches that larger entities might overlook. By ensuring that all voices are heard, the Collaborative Framework enhances the quality of research outcomes.
In conclusion, the Collaborative Framework and Partnerships within the European Strategic Programme on Research in Information Technology represent a significant step towards a more integrated and innovative research landscape. While challenges exist, the potential benefits of collaboration far outweigh them. If we can work together, who knows what groundbreaking advancements we might achieve?
Impact Assessment and Future Directions
Okay, so, like, lets talk about the impact assessment and, uh, future directions for the European Strategic Programme on Research in Information Technology, or ESPRIT, right? Its kinda a big deal.
Looking back, (and I mean really looking back), ESPRIT wasnt just throwing money at random tech projects. It actually did shift the European IT landscape. We saw more collaboration, some cool new technologies popped up, and, well, industry got a bit of a kick in the pants, didnt it? But, and this is a big but, it wasnt all sunshine and rainbows, was it? Not every project became the next Google, and sometimes, the bureaucracy you wouldnt believe, just, wow!
Now, thinking forward (and this is where it gets interesting!), we cant just keep doing the same thing. The worlds changed, hasnt it? Were dealing with AI, quantum computing, cybersecurity threats that are, like, everywhere. ESPRIT needs to be, like, super agile and focus on areas where Europe can actually lead, not just follow. We shouldnt spread the funding so thin that nothing really significant emerges, no way.
Future directions? Well, how about promoting open source, fostering genuine multi-disciplinary research (not just saying we are), and, oh, I dont know, cutting some of the red tape?! Maybe even encouraging more daring, high-risk, high-reward projects. We need to invest in the future, especially in young researchers and startups. We cant neglect their potential!
So, yeah, ESPRITs impact is undeniable, though not always perfect. And whats next? Its all about being smarter, nimbler, and, most importantly, not being afraid to take a few (calculated!) risks. Right!
European Strategic Programme on Research in Information Technology - custom internet solutions for startups
The Internet (or internet) is the worldwide system of interconnected local area network that utilizes the Internet protocol collection (TCP/IP) to interact in between networks and gadgets. It is a network of networks that includes exclusive, public, scholastic, business, and federal government networks of regional to worldwide range, connected by a wide array of electronic, cordless, and optical networking technologies. The Net brings a substantial variety of details sources and solutions, such as the interlinked hypertext papers and applications of the Internet (WWW), electronic mail, web telephone systems, and file sharing. The origins of the Internet go back to study that enabled the time-sharing of computer sources, the advancement of packet switching in the 1960s and the style of computer networks for data interaction. The set of policies (interaction procedures) to enable internetworking on the web arose from research and development appointed in the 1970s by the Protection Advanced Research Study Projects Agency (DARPA) of the USA Division of Defense in cooperation with universities and researchers throughout the United States and in the UK and France. The ARPANET originally worked as a backbone for the interconnection of regional academic and armed forces networks in the United States to enable source sharing. The funding of the National Scientific Research Foundation Network as a brand-new backbone in the 1980s, along with personal financing for other commercial extensions, urged globally participation in the development of new networking modern technologies and the merging of lots of networks using DARPA's Internet protocol collection. The connecting of industrial networks and business by the early 1990s, along with the introduction of the Net, noted the start of the transition to the contemporary Internet, and generated continual exponential growth as generations of institutional, individual, and mobile computer systems were connected to the internetwork. Although the Internet was widely utilized by academic community in the 1980s, the subsequent commercialization of the Net in the 1990s and past included its solutions and modern technologies right into virtually every aspect of modern life. A lot of standard communication media, consisting of telephone, radio, tv, paper mail, and papers, are reshaped, redefined, or even bypassed by the Web, giving birth to brand-new solutions such as e-mail, Web telephone, Internet radio, Net television, online songs, digital newspapers, and audio and video streaming websites. Newspapers, books, and other print posting have actually adapted to site innovation or have actually been improved right into blog writing, internet feeds, and online news aggregators. The Net has enabled and sped up brand-new forms of personal communication via instant messaging, Web forums, and social networking solutions. On the internet purchasing has expanded significantly for major stores, small businesses, and business owners, as it allows firms to extend their "traditional" presence to serve a bigger market or perhaps sell items and solutions completely online. Business-to-business and economic services on the web impact supply chains throughout entire sectors. The Internet has no solitary central administration in either technological application or policies for access and usage; each constituent network establishes its own plans.The overarching definitions of the two primary name rooms on the net, the Net Method address (IP address) room and the Domain System (DNS), are routed by a maintainer organization, the Internet Corporation for Assigned Names and Figures (ICANN). The technical support and standardization of the core protocols is an activity of the Internet Design Task Pressure (IETF), a non-profit company of loosely associated global participants that anybody might associate with by contributing technical experience. In November 2006, the Net was consisted of on USA Today's list of the New Seven Marvels.
ICT is also used to refer to the convergence of audiovisuals and telephone networks with computer networks through a single cabling or link system. There are large economic incentives to merge the telephone networks with the computer network system using a single unified system of cabling, signal distribution, and management. ICT is an umbrella term that includes any communication device, encompassing radio, television, cell phones, computer and network hardware, satellite systems and so on, as well as the various services and appliances with them such as video conferencing and distance learning. ICT also includes analog technology, such as paper communication, and any mode that transmits communication.[2]
ICT is a broad subject and the concepts are evolving.[3] It covers any product that will store, retrieve, manipulate, process, transmit, or receive information electronically in a digital form (e.g., personal computers including smartphones, digital television, email, or robots). Skills Framework for the Information Age is one of many models for describing and managing competencies for ICT professionals in the 21st century.[4]
The phrase "information and communication technologies" has been used by academic researchers since the 1980s.[5] The abbreviation "ICT" became popular after it was used in a report to the UK government by Dennis Stevenson in 1997,[6] and then in the revised National Curriculum for England, Wales and Northern Ireland in 2000. However, in 2012, the Royal Society recommended that the use of the term "ICT" should be discontinued in British schools "as it has attracted too many negative connotations".[7] From 2014, the National Curriculum has used the word computing, which reflects the addition of computer programming into the curriculum.[8]
The money spent on IT worldwide has been estimated as US$3.8 trillion[10] in 2017 and has been growing at less than 5% per year since 2009. The estimated 2018 growth of the entire ICT is 5%. The biggest growth of 16% is expected in the area of new technologies (IoT, Robotics, AR/VR, and AI).[11]
The 2014 IT budget of the US federal government was nearly $82 billion.[12] IT costs, as a percentage of corporate revenue, have grown 50% since 2002, putting a strain on IT budgets. When looking at current companies' IT budgets, 75% are recurrent costs, used to "keep the lights on" in the IT department, and 25% are the cost of new initiatives for technology development.[13]
The average IT budget has the following breakdown:[13]
34% personnel costs (internal), 31% after correction
16% software costs (external/purchasing category), 29% after correction
33% hardware costs (external/purchasing category), 26% after correction
17% costs of external service providers (external/services), 14% after correction
The estimated amount of money spent in 2022 is just over US$6 trillion.[14]
The world's technological capacity to store information grew from 2.6 (optimally compressed) exabytes in 1986 to 15.8 in 1993, over 54.5 in 2000, and to 295 (optimally compressed) exabytes in 2007, and some 5 zettabytes in 2014.[15][16] This is the informational equivalent to 1.25 stacks of CD-ROM from the earth to the moon in 2007, and the equivalent of 4,500 stacks of printed books from the earth to the sun in 2014. The world's technological capacity to receive information through one-way broadcast networks was 432 exabytes of (optimally compressed) information in 1986, 715 (optimally compressed) exabytes in 1993, 1.2 (optimally compressed) zettabytes in 2000, and 1.9 zettabytes in 2007.[15] The world's effective capacity to exchange information through two-way telecommunication networks was 281 petabytes of (optimally compressed) information in 1986, 471 petabytes in 1993, 2.2 (optimally compressed) exabytes in 2000, 65 (optimally compressed) exabytes in 2007,[15] and some 100 exabytes in 2014.[17] The world's technological capacity to compute information with humanly guided general-purpose computers grew from 3.0 × 10^8 MIPS in 1986, to 6.4 x 10^12 MIPS in 2007.[15]
The ICT Development Index ranks and compares the level of ICT use and access across the various countries around the world.[19] In 2014 ITU (International Telecommunication Union) released the latest rankings of the IDI, with Denmark attaining the top spot, followed by South Korea. The top 30 countries in the rankings include most high-income countries where the quality of life is higher than average, which includes countries from Europe and other regions such as "Australia, Bahrain, Canada, Japan, Macao (China), New Zealand, Singapore, and the United States; almost all countries surveyed improved their IDI ranking this year."[20]
On 21 December 2001, the United Nations General Assembly approved Resolution 56/183, endorsing the holding of the World Summit on the Information Society (WSIS) to discuss the opportunities and challenges facing today's information society.[21] According to this resolution, the General Assembly related the Summit to the United Nations Millennium Declaration's goal of implementing ICT to achieve Millennium Development Goals. It also emphasized a multi-stakeholder approach to achieve these goals, using all stakeholders including civil society and the private sector, in addition to governments.
To help anchor and expand ICT to every habitable part of the world, "2015 is the deadline for achievements of the UN Millennium Development Goals (MDGs), which global leaders agreed upon in the year 2000."[22]
Today's society shows the ever-growing computer-centric lifestyle, which includes the rapid influx of computers in the modern classroom.
There is evidence that, to be effective in education, ICT must be fully integrated into the pedagogy. Specifically, when teaching literacy and math, using ICT in combination with Writing to Learn[23][24] produces better results than traditional methods alone or ICT alone.[25] The United Nations Educational, Scientific and Cultural Organisation (UNESCO), a division of the United Nations, has made integrating ICT into education as part of its efforts to ensure equity and access to education. The following, which was taken directly from a UNESCO publication on educational ICT, explains the organization's position on the initiative.
Information and Communication Technology can contribute to universal access to education, equity in education, the delivery of quality learning and teaching, teachers' professional development and more efficient education management, governance, and administration. UNESCO takes a holistic and comprehensive approach to promote ICT in education. Access, inclusion, and quality are among the main challenges they can address. The Organization's Intersectoral Platform for ICT in education focuses on these issues through the joint work of three of its sectors: Communication & Information, Education and Science.[26]
OLPC Laptops at school in Rwanda
Despite the power of computers to enhance and reform teaching and learning practices, improper implementation is a widespread issue beyond the reach of increased funding and technological advances with little evidence that teachers and tutors are properly integrating ICT into everyday learning.[27] Intrinsic barriers such as a belief in more traditional teaching practices and individual attitudes towards computers in education as well as the teachers own comfort with computers and their ability to use them all as result in varying effectiveness in the integration of ICT in the classroom.[28]
School environments play an important role in facilitating language learning. However, language and literacy barriers are obstacles preventing refugees from accessing and attending school, especially outside camp settings.[29]
Mobile-assisted language learning apps are key tools for language learning. Mobile solutions can provide support for refugees' language and literacy challenges in three main areas: literacy development, foreign language learning and translations. Mobile technology is relevant because communicative practice is a key asset for refugees and immigrants as they immerse themselves in a new language and a new society. Well-designed mobile language learning activities connect refugees with mainstream cultures, helping them learn in authentic contexts.[29]
Representatives meet for a policy forum on M-Learning at UNESCO's Mobile Learning Week in March 2017.
ICT has been employed as an educational enhancement in Sub-Saharan Africa since the 1960s. Beginning with television and radio, it extended the reach of education from the classroom to the living room, and to geographical areas that had been beyond the reach of the traditional classroom. As the technology evolved and became more widely used, efforts in Sub-Saharan Africa were also expanded. In the 1990s a massive effort to push computer hardware and software into schools was undertaken, with the goal of familiarizing both students and teachers with computers in the classroom. Since then, multiple projects have endeavoured to continue the expansion of ICT's reach in the region, including the One Laptop Per Child (OLPC) project, which by 2015 had distributed over 2.4 million laptops to nearly two million students and teachers.[30]
The inclusion of ICT in the classroom, often referred to as M-Learning, has expanded the reach of educators and improved their ability to track student progress in Sub-Saharan Africa. In particular, the mobile phone has been most important in this effort. Mobile phone use is widespread, and mobile networks cover a wider area than internet networks in the region. The devices are familiar to student, teacher, and parent, and allow increased communication and access to educational materials. In addition to benefits for students, M-learning also offers the opportunity for better teacher training, which leads to a more consistent curriculum across the educational service area. In 2011, UNESCO started a yearly symposium called Mobile Learning Week with the purpose of gathering stakeholders to discuss the M-learning initiative.[30]
Implementation is not without its challenges. While mobile phone and internet use are increasing much more rapidly in Sub-Saharan Africa than in other developing countries, the progress is still slow compared to the rest of the developed world, with smartphone penetration only expected to reach 20% by 2017.[30] Additionally, there are gender, social, and geo-political barriers to educational access, and the severity of these barriers vary greatly by country. Overall, 29.6 million children in Sub-Saharan Africa were not in school in the year 2012, owing not just to the geographical divide, but also to political instability, the importance of social origins, social structure, and gender inequality. Once in school, students also face barriers to quality education, such as teacher competency, training and preparedness, access to educational materials, and lack of information management.[30]
In modern society, ICT is ever-present, with over three billion people having access to the Internet.[31] With approximately 8 out of 10 Internet users owning a smartphone, information and data are increasing by leaps and bounds.[32] This rapid growth, especially in developing countries, has led ICT to become a keystone of everyday life, in which life without some facet of technology renders most of clerical, work and routine tasks dysfunctional.
The most recent authoritative data, released in 2014, shows "that Internet use continues to grow steadily, at 6.6% globally in 2014 (3.3% in developed countries, 8.7% in the developing world); the number of Internet users in developing countries has doubled in five years (2009–2014), with two-thirds of all people online now living in the developing world."[20]
However, hurdles are still large. "Of the 4.3 billion people not yet using the Internet, 90% live in developing countries. In the world's 42 Least Connected Countries (LCCs), which are home to 2.5 billion people, access to ICTs remains largely out of reach, particularly for these countries' large rural populations."[33] ICT has yet to penetrate the remote areas of some countries, with many developing countries dearth of any type of Internet. This also includes the availability of telephone lines, particularly the availability of cellular coverage, and other forms of electronic transmission of data. The latest "Measuring the Information Society Report" cautiously stated that the increase in the aforementioned cellular data coverage is ostensible, as "many users have multiple subscriptions, with global growth figures sometimes translating into little real improvement in the level of connectivity of those at the very bottom of the pyramid; an estimated 450 million people worldwide live in places which are still out of reach of mobile cellular service."[31]
Favourably, the gap between the access to the Internet and mobile coverage has decreased substantially in the last fifteen years, in which "2015 was the deadline for achievements of the UN Millennium Development Goals (MDGs), which global leaders agreed upon in the year 2000, and the new data show ICT progress and highlight remaining gaps."[22] ICT continues to take on a new form, with nanotechnology set to usher in a new wave of ICT electronics and gadgets. ICT newest editions into the modern electronic world include smartwatches, such as the Apple Watch, smart wristbands such as the Nike+ FuelBand, and smart TVs such as Google TV. With desktops soon becoming part of a bygone era, and laptops becoming the preferred method of computing, ICT continues to insinuate and alter itself in the ever-changing globe.
Information communication technologies play a role in facilitating accelerated pluralism in new social movements today. The internet according to Bruce Bimber is "accelerating the process of issue group formation and action"[34] and coined the term accelerated pluralism to explain this new phenomena. ICTs are tools for "enabling social movement leaders and empowering dictators"[35] in effect promoting societal change. ICTs can be used to garner grassroots support for a cause due to the internet allowing for political discourse and direct interventions with state policy[36] as well as change the way complaints from the populace are handled by governments. Furthermore, ICTs in a household are associated with women rejecting justifications for intimate partner violence. According to a study published in 2017, this is likely because "access to ICTs exposes women to different ways of life and different notions about women's role in society and the household, especially in culturally conservative regions where traditional gender expectations contrast observed alternatives."[37]
A review found that in general, outcomes of such ICT-use – which were envisioned as early as 1925[38] – are or can be as good as in-person care with health care use staying similar.[39]
Scholar Mark Warschauer defines a "models of access" framework for analyzing ICT accessibility. In the second chapter of his book, Technology and Social Inclusion: Rethinking the Digital Divide, he describes three models of access to ICTs: devices, conduits, and literacy.[40] Devices and conduits are the most common descriptors for access to ICTs, but they are insufficient for meaningful access to ICTs without third model of access, literacy.[40] Combined, these three models roughly incorporate all twelve of the criteria of "Real Access" to ICT use, conceptualized by a non-profit organization called Bridges.org in 2005:[41]
Physical access to technology
Appropriateness of technology
Affordability of technology and technology use
Human capacity and training
Locally relevant content, applications, and services
The most straightforward model of access for ICT in Mark Warschauer's theory is devices.[40] In this model, access is defined most simply as the ownership of a device such as a phone or computer.[40] Warschauer identifies many flaws with this model, including its inability to account for additional costs of ownership such as software, access to telecommunications, knowledge gaps surrounding computer use, and the role of government regulation in some countries.[40] Therefore, Warschauer argues that considering only devices understates the magnitude of digital inequality. For example, the Pew Research Center notes that 96% of Americans own a smartphone,[42] although most scholars in this field would contend that comprehensive access to ICT in the United States is likely much lower than that.
A conduit requires a connection to a supply line, which for ICT could be a telephone line or Internet line. Accessing the supply requires investment in the proper infrastructure from a commercial company or local government and recurring payments from the user once the line is set up. For this reason, conduits usually divide people based on their geographic locations. As a Pew Research Center poll reports, Americans in rural areas are 12% less likely to have broadband access than other Americans, thereby making them less likely to own the devices.[43] Additionally, these costs can be prohibitive to lower-income families accessing ICTs. These difficulties have led to a shift toward mobile technology; fewer people are purchasing broadband connection and are instead relying on their smartphones for Internet access, which can be found for free at public places such as libraries.[44] Indeed, smartphones are on the rise, with 37% of Americans using smartphones as their primary medium for internet access[44] and 96% of Americans owning a smartphone.[42]
In 1981, Sylvia Scribner and Michael Cole studied a tribe in Liberia, the Vai people, who have their own local script. Since about half of those literate in Vai have never had formal schooling, Scribner and Cole were able to test more than 1,000 subjects to measure the mental capabilities of literates over non-literates.[45] This research, which they laid out in their book The Psychology of Literacy,[45] allowed them to study whether the literacy divide exists at the individual level. Warschauer applied their literacy research to ICT literacy as part of his model of ICT access.
Scribner and Cole found no generalizable cognitive benefits from Vai literacy; instead, individual differences on cognitive tasks were due to other factors, like schooling or living environment.[45] The results suggested that there is "no single construct of literacy that divides people into two cognitive camps; [...] rather, there are gradations and types of literacies, with a range of benefits closely related to the specific functions of literacy practices."[40] Furthermore, literacy and social development are intertwined, and the literacy divide does not exist on the individual level.
Warschauer draws on Scribner and Cole's research to argue that ICT literacy functions similarly to literacy acquisition, as they both require resources rather than a narrow cognitive skill. Conclusions about literacy serve as the basis for a theory of the digital divide and ICT access, as detailed below:
There is not just one type of ICT access, but many types. The meaning and value of access varies in particular social contexts. Access exists in gradations rather than in a bipolar opposition. Computer and Internet use brings no automatic benefit outside of its particular functions. ICT use is a social practice, involving access to physical artifacts, content, skills, and social support. And acquisition of ICT access is a matter not only of education but also of power.[40]
Therefore, Warschauer concludes that access to ICT cannot rest on devices or conduits alone; it must also engage physical, digital, human, and social resources.[40] Each of these categories of resources have iterative relations with ICT use. If ICT is used well, it can promote these resources, but if it is used poorly, it can contribute to a cycle of underdevelopment and exclusion.[45]
In the early 21st century a rapid development of ICT services and electronical devices took place, in which the internet servers multiplied by a factor of 1000 to 395 million and its still increasing. This increase can be explained by Moore's law, which states, that the development of ICT increases every year by 16–20%, so it will double in numbers every four to five years.[46] Alongside this development and the high investments in increasing demand for ICT capable products, a high environmental impact came with it. Software and Hardware development as well as production causing already in 2008 the same amount of CO2 emissions as global air travels.[46]
There are two sides of ICT, the positive environmental possibilities and the shadow side. On the positive side, studies proved, that for instance in the OECD countries a reduction of 0.235% energy use is caused by an increase in ICT capital by 1%.[47] On the other side the more digitization is happening, the more energy is consumed, that means for OECD countries 1% increase in internet users causes a raise of 0.026% electricity consumption per capita and for emerging countries the impact is more than 4 times as high.
Currently the scientific forecasts are showing an increase up to 30700 TWh in 2030 which is 20 times more than it was in 2010.[47]
To tackle the environmental issues of ICT, the EU commission plans proper monitoring and reporting of the GHG emissions of different ICT platforms, countries and infrastructure in general. Further the establishment of international norms for reporting and compliance are promoted to foster transparency in this sector.[48]
Moreover it is suggested by scientists to make more ICT investments to exploit the potentials of ICT to alleviate CO2 emissions in general, and to implement a more effective coordination of ICT, energy and growth policies.[49] Consequently, applying the principle of the coase theorem makes sense. It recommends to make investments there, where the marginal avoidance costs of emissions are the lowest, therefore in the developing countries with comparatively lower technological standards and policies as high-tech countries. With these measures, ICT can reduce environmental damage from economic growth and energy consumption by facilitating communication and infrastructure.
^Ozdamli, Fezile; Ozdal, Hasan (May 2015). "Life-long Learning Competence Perceptions of the Teachers and Abilities in Using Information-Communication .Technologies". Procedia - Social and Behavioral Sciences. 182: 718–725. doi:10.1016/j.access=free.
^William Melody et al., Information and Communication Technologies: Social Sciences Research and Training: A Report by the ESRC Programme on Information and Communication Technologies, ISBN0-86226-179-1, 1986. Roger Silverstone et al., "Listening to a long conversation: an ethnographic approach to the study of information and communication technologies in the home", Cultural Studies, 5(2), pages 204–227, 1991.
^Blackwell, C.K., Lauricella, A.R. and Wartella, E., 2014. Factors influencing digital technology use in early childhood education. Computers & Education, 77, pp.82-90.
^Bimber, Bruce (1998-01-01). "The Internet and Political Transformation: Populism, Community, and Accelerated Pluralism". Polity. 31 (1): 133–160. doi:10.2307/3235370. JSTOR3235370. S2CID145159285.
^Hussain, Muzammil M.; Howard, Philip N. (2013-03-01). "What Best Explains Successful Protest Cascades? ICTs and the Fuzzy Causes of the Arab Spring". International Studies Review. 15 (1): 48–66. doi:10.1111/misr.12020. hdl:2027.42/97489. ISSN1521-9488.
^Cardoso LG, Sorenson SB. Violence against women and household ownership of radios, computers, and phones in 20 countries. American Journal of Public Health. 2017; 107(7):1175–1181.
^ abcdScribner and Cole, Sylvia and Michael (1981). The Psychology of Literacy. ISBN9780674433014.
^ abGerhard, Fettweis; Zimmermann, Ernesto (2008). "ITC Energy Consumption - Trends and Challenges". The 11th International Symposium on Wireless Personal Multimedia Communications (WPMC 2008) – via ResearchGate.
Feridun, Mete; Karagiannis, Stelios (2009). "Growth Effects of Information and Communication Technologies: Empirical Evidence from the Enlarged EU". Transformations in Business and Economics. 8 (2): 86–99.
CompTIA (Computing Technology Industry Association) – offers 12 professional IT Certifications, validating foundation-level IT knowledge and skills.
European Computer Driving License-Foundation – sponsors the European Computer Driving License (also called International Computer Driving License) (ICDL)
NACSE (National Association of Communication Systems Engineers) sponsors 36 Vendor Neutral, knowledge specific, Certifications covering the 5 major IT Disciplines which are: Data Networking, Telecomm, Web Design & Development, Programming & Business Skills for IT Professionals.
The Open Group – sponsors TOGAF certification and the IT Architect Certification (ITAC) and IT Specialist Certification (ITSC) skills and experience based IT certifications.
General certification of software practitioners has struggled. The ACM had a professional certification program in the early 1980s, which was discontinued due to lack of interest. Today, the IEEE is certifying software professionals, but only about 500 people have passed the exam by March 2005[update].
Surveillance, Transparency and Democracy: Public Administration in the Information Age. p. 35-57. University of Alabama Press, Tuscaloosa, AL.
ISBN978-0-8173-1877-2
^Haque, Akhlaque (2015). Surveillance, Transparency and Democracy: Public Administration in the Information Age. Tuscaloosa, AL: University of Alabama Press. pp. 35–57. ISBN978-0-8173-1877-2.
IT providers enable remote work by setting up secure access to company systems, deploying VPNs, cloud apps, and communication tools. They also ensure devices are protected and provide remote support when employees face technical issues at home.
IT consulting helps you make informed decisions about technology strategies, software implementation, cybersecurity, and infrastructure planning. Consultants assess your current setup, recommend improvements, and guide digital transformation to align IT systems with your business goals.
Yes, IT service providers implement firewalls, antivirus software, regular patching, and network monitoring to defend against cyber threats. They also offer data backups, disaster recovery plans, and user access controls to ensure your business remains protected.
Cloud computing allows you to store, manage, and access data and applications over the internet rather than local servers. It’s scalable, cost-effective, and ideal for remote work, backup solutions, and collaboration tools like Microsoft 365 and Google Workspace