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Abstract  
A dynamic analysis of axially loaded Timoshenko 
beams with intermediate fixities is presented. The 
underwater part of a craft is modeled as a flexible 
beam, which rises out and slams against the 
water at a large vertical velocity, causing highly 
localized hydrodynamic impact pressure moving 
at high velocities across the beam, setting it into 
high-frequency vibrations. The beam natural 
frequencies depend on the slenderness ratio, axial 
load, and end fixities. Increasing the axial tension 
and/or end fixity increases the natural 
frequencies, which are generated through Eigen 
analysis. 
Next, normal mode summation is used to analyze 
the impact-induced vibration response, which is 
generated for various impact speeds, deadrise 
angles, end fixities, axial loads, and slenderness 
ratios of the beam. A parametric study is done to 
predict the maximum dynamic stresses on the 
structure. The pressure is assumed to act at the 
equilibrium position. The aim is to study the 
dynamic stress configurations and draw 
conclusions leading to sound structural designs. 
 
Keywords Slamming, Impact loads, Beam 
vibration, Dynamic stresses, Normal mode 
analysis. 
 
1. Introduction 

 
As conventional ship design gives way to non-

conventional high performance marine vehicles, structural 
analysis of high speed crafts becomes the cornerstone of a 
sound structural design. Crafts like planning crafts, 
hydrofoil crafts, catamarans, surface-effect ships (SES) 
are subject to various dynamic loads during their 
operation. Dynamic lift due to planing leads to emergence 

of the craft above its zero-speed waterline. This changed 
attitude greatly changes the seakeeping and dynamic 
effects of the craft (slamming, deck-wetness, sea-
sickness, etc). Changing forward speeds of the craft and 
sea states change the dynamic lift produced, leading to a 
certain probability of slam, which is the product of the 
probability of forefoot emergence and the probability of 
exceedance of the vertical velocity over a threshold 
velocity.  

Bokaian (1990) studied the free vibration of axially 
loaded Timoshenko beams, with classical end conditions. 
Lin (1994) studied the vibration of simply-supported 
Timoshenko beams to moving point loads, using Finite 
Element Analysis.  This study was limited to a point load, 
and a single boundary condition of the beam. Axial 
tension was also absent. Chang (1994) studied 
Timoshenko beams on elastic foundations and axial loads, 
but the external force was limited to point loads, varying 
randomly in time. The end conditions of the beam 
remained simply-supported. Farchaly and Shebl (1995) 
studied the frequencies and modeshapes of Timoshenko 
beams with intermediate fixities and elastic end supports. 
This study was limited to free vibration only. Wang 
(1997) studied the vibration of multi-span Timoshenko 
beams to point moving loads, using the normal mode 
summation method. The forced vibration was 
comparatively done for both Euler-Bernoulli and 
Timoshenko beams.  Majkut (2009) solved the vibration 
of Timoshenko beams by the Green’s function method, 

since the forcing was a Dirac Delta function in space. The 
natural frequencies and modeshapes of a Timoshenko 
beam have been compared to those of a Euler-Bernoulli 
beam, for various classical end conditions.  

None of the above has explored the vibratory 
dynamics of a beam under loads similar to the 
hydrodynamic impact configurations.  

In this work, the underwater part of the craft is 
modeled as an axially loaded Timoshenko beam, with 
intermediate end fixities. First, the free vibration analysis 
has been done by the Eigen Value method, in order to 
generate the  natural frequencies and modeshapes.  The 
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free vibration frequencies, with and without axial tension, 
have been tabulated for various end fixities. The beam is 
then subjected to two configurations of the stretching 
hydrodynamic transient load : (a) uniform stretching load 
of unit magnitude, and (b) Impact load configuration at 
various deadrise angles. The dynamic analysis has been 
done by the normal mode summation method, while the 
static analysis has been done by the Galerkin’s method. 

The maximum dynamic overshoot over the maximum 
static deflection generates the dynamic loading factor 
(DLF) for various speeds of the transient load. The 
wetting time of the plate has been non-dimensionalized by 
the first natural frequency of the beam, to generate the 
non-dimensional wetting time τ. The DLF vs. τ 

characteristics have been generated for the Timoshenko 
beam with several different end fixities, with and without 
tension, and some structural damping. The range of τ, for 

which the beam shows pronounced dynamic behavior has 
been established. This leads to insights leading to sound 
structural recommendations.  

 
2. Problem formulation 

The underwater part of the vessel (Fig.1) is modeled 
as a lightly damped Timoshenko beam, at a deadrise angle 
of β degrees to the horizontal, which impacts against the 
water surface as a vertical velocity V m/sec; which is the 
velocity of the relative bow motion, i.e. the net velocity of 
heave, pitch, and wave elevation at that location, 
including the phase differences. The beam may be axially 
loaded either in compression or in tension. The end 
fixities vary from 0% (Simply-supported beam) to 100% 
(Clamped-clamped beam), depending on the quality of the 
welding. The hydrodynamic impact causes a very high 
magnitude, localized, transient pressure to move across 
the length of the beam; setting it into high-frequency 
vibrations, causing bending stress and shear stress waves 
along the length of the beam. The length varies along x 
(metres), and the time is denoted as t (seconds). The x=0 
and x=L locations typically correspond to the longitudinal 
stiffeners of the craft. The total out-out-plane transverse 
flexural deflection of the beam is denoted as z(x,t), 
varying as a function of space and time. The structural 
damping is assumed to be zero, since marine structures 
are usually very lightly damped. The maximum deflection 
is assumed to occur early in the impact sequence, and 
hence the analysis is done for dry vibrations, ignoring the 
fluid inertia (added masses) of the surrounding water. The 
wetdeck vibrations of a catamaran, after such an impact, 
are almost always dry vibrations. The high frequency 
limit of structural oscillations leads to a nearly calm water 
free-surface condition (rigid lid condition). The radiation 
damping is considered to be zero.  

 
 
 

 
                                                V                    d(t)                  V 

                     β                                                        
                                             plate                         x             
                                                                                    β  

Fig. 1      Cross-sectional slamming model of a typical 
high-speed craft. 

 
The moving force f(x,t) N/m is modeled as a function 

of space and time. Two forcing configurations are used as 
follows : 
(1) Uniform stretching load configuration (Single 

sweep). 
In this benchmark forcing case, a force of unit 

magnitude F(x,t) = 1 N/m stretches across the length L of 
the beam at different speeds c, such that the wetting time 
is L/c, as shown in Fig.2. This configuration models the 
progressive wetting of the beam upon entering the water. 
The wetting time is non-dimensionalized by the first 
natural period of the beam. The non-D splash time is 

defined as 





2
1n

c

L
 . This combines the two time-scales 

of the problem into one.  
 
 
 

 
 

Fig.2  Uniform stretching load of unit magnitude. 
 
 
 
 

 
 
 
 
 
 

 
Fig.3  Hydrodynamic impact load (non-D). 

 
(2) Impact force configuration of the impact 

force  
As shown in Fig.3, here the sweeping force rises to a 

peak value and drops to nearly zero. The keel pressure 
remains the same, while the force stretches across the 

beam at a speed .
sin2 

V
The wetting speed, the peak 

pressure, and the loading configuration, depend on the 
impact velocity V and the deadrise angle β. The smaller 

the deadrise angle, the greater is the peak pressure, more 

2

2
)(tan

2




V

P

w

impact
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concentrated is the forcing configuration, and faster is the 
wetting.  
 

Table 1 : Impact pressure characteristics for  V = 10 m/sec 

Deadrise angle 
V

td


)(

 

spT  
stag

peak

P

P

 stag

keel

P

P

 

1 degree 90.00457 0.11 8100.823 180.0091 

5 degrees 18.02287 0.56 324.8237 36.04573 

15 degrees 6.069091 1.65 36.83387 12.13818 

30 degrees 3.141593 3.18 9.869604 6.283185 

The jet head is given as 




tan2
)(

Vt
td  , the jet head 

velocity is 




tan2
)(

V
td 


. The constant keel pressure is 

given as 


 )(),0( tdVtP water  and the transient peak 

pressure is expressed as 
2

)(
2 












tdP water
peak


, which 

are the two constants of the stretching  load. The 
stagnation pressure of the vertical impact velocity is given 

as 2

2
VP water

stagnation


 . Including the rise-up of the 

water due to the impact, the wetting time is defined and 
non-dimensionalized by the fundamental natural period of 
the beam, as:  

.1
2

sin2
,

sin2 2,1
















dry
sp V

L

V

L
T  

Table 1 shows above characteristics of the 
impact pressure at four different deadrise angles, at V = 
10m/sec. The pressure distribution, at any instant, is 
assumed to be a parabolic distribution, emulating the 
Wagner’s impact pressure model. With xw as the wetted 
length as a given instant of time, 

.
sin2

,
)(4

,
4

),(
22



Vt
x

PP

x
a

a

x
PtxP w

keelpeak

w
keel 


  

Repeated impacts cause cumulative deflections and 
stresses in the beam. The subsequent forcing 
configurations are assumed to act on the deformed beam. 
The duration between two consecutive slams is calculated 
through the probability if slamming. Forefoot emergence 
is the necessary condition for slam, and exceedance of the 
threshold vertical velocity is the sufficient condition. This 
threshold velocity differs for different deadrise angles.  
 
3. Analysis methodology 

The system of simultaneous governing differential 
equations of impact-induced undamped free vibration of 
an axially loaded Timoshenko beam, utilizing Newton’s 

second law, is given as follows : 

;
),(),(),(),(

2

2
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x
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EItx

x
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t
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


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









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



 



 Or 

    '"'"'" ; NzEIzAGINzzAGzA 




      Eq. 1(A,B) 
Eq.1(A) is a force balance equation, while 

Eq.1(B) is a moment balance equation, per unit length. 
The axial force N is positive for tensile force and negative 
for compressive force. Here, ),( txz is the deflection and 

),( tx is the bending slope, as functions of space and 

time. ρ is the density of the beam, A is the cross-sectional 
area of the beam, I is the second moment of area of the 
cross-sectional are of the beam about the horizontal 
neutral axis, E is the elastic modulus and G is the shear 
modulus of the material, and μ is the Timoshenko shear 

coefficient (=5/6 for a rectangular section). The shear 
deformation and rotary inertia are included in the beam 
analysis. The shear strain is assumed constant over a 
given cross-section.  

 
 
The four boundary conditions are expressed as: 

 

.
),(),(

;
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;0),(;0),0(

2
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tLz
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


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The displacement is zero at the ends, while the bending 
moment at the end equals the restraining moment at the 
ends. The end fixities are modeled as torsional springs at 
the left and right ends, with torsional spring constants 

LK and RK . As these spring constants tend to zero, the 

end bending moments vanish and the beam approaches a 
simply supported beam. As these spring constant tend to 
infinity, the end slopes vanish and the beam approaches a 
clamped-clamped beam.  
 

3.1 Free Vibration 
The total deflection ),( txz and bending slope ),( tx  

are given as a superposition of the modeshapes (in space) 
and principal coordinates (in time). Here, )(xj is the jth 

beam modeshape, and )(xj is the jth bending slope 

modeshape. The total deflection is a sum of (a) pure 
bending deflection, which is given by the Euler-Bernoulli 
beam theory, and (b) the shear deflection. The total slope 
is a sum of the pure bending slope and the shear 
deflection slope. They are respectively expressed as 

)()(),(
1

tqxtxz j
j

j




  and )()(),(
1

tqxtx j
j

j




  .  
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Separation of the variables leads to a fourth order 
equation in space, and a second order equation in time. 
Euler-Bernoulli beams generate a unique frequency 
parameter, corresponding to a single natural frequency. 
The process followed is similar to that given by Chang 
(1994). Timoshenko beams have a pair of frequency 
parameters associated with a unique natural frequency. 
Substitution of the boundary conditions leads to a 
transcendental equation, solved by the Newton-Raphson 
method to generate the pairs of frequency-parameters.  
 

3.2 Forced Vibration 
The system of simultaneous governing differential 

equations of impact-induced undamped forced vibration 
of an axially loaded Timoshenko beam, utilizing 
Newton’s second law, is given by Eq.2(A,B), as follows : 

  ;),(),(),(),(),( "'" txNztxFtxtxzAGtxzA 




  ).,(),(),(),( "' txEItxtxzAGtxI  


 

     Eq.2(A,B) 
3.2.1 Dynamic Analysis 
The shear deformation and rotary inertia are both 

included in the dynamic analysis. Using the modal 
expansion for the deflection and the bending slope, the 
system of equation is expressed as  
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Eq.3(A,B) 
Eq.3(A) is pre-multiplied by )(xk and integrated over 

the length L, to generate Eq.4(A). Eq.3(B) is pre-
multiplied by )(xk and integrated over the length L, to 

generate Eq.4(B).  
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The beam modeshapes are orthogonal to each other, and 
the beam-slope modeshapes are also orthogonal to each 
other. Writing it in the matrix form, the system of 
equations becomes : 

                

             043

21









qGKqGSqGSqGR

GFqGNqGSqGSqGCqGM
 

       Eq.4(A,B) 
Proportional structural damping is included, 

which manifests in the first equation above as the 

generalized damping     GMGKGC 2 , where δ is 

the damping ratio and   GMGK2 can be considered to 

be the modal critical damping. The physical structural 
damping has not been explicitly defined here. The 
combined equation is written as : 

           
    ,)()(

)()()()(

tGFtqGN

tqGKtqGStqGCtqGRGM






                  Eq.5 
where          .4321 GSGSGSGSGS   

The advantage of the normal mode summation is 
that the two coupled governing differential equations can 
be written as a single equation as a function of time.  Eq.5 
is solved simultaneously by the Euler-implicit-explicit 
time-integrator method to generate the principal 
coordinates as functions of time, which are then pre-
multiplied by the beam modes and slope modes to 
generate the deflection and bending slope respectively, as 
functions of space and time.  
 

3.2.2 Static Analysis 
Only the shear deformation gets included in the 

static analysis. The system of simultaneous governing 
differential equations of forced quasi-static deflection of 
an axially loaded Timoshenko beam, utilizing Newton’s 

second law, is given as follows 

:   ;0),(),(),(),( "'"  txNztxFtxtxzAG 

  .0),(),(),(),( '"'  txNztxEItxtxzAG      Eq.6 
Eliminating the pure bending slope ),( tx from the above 

system of coupled static equations, we 
get
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Let the static deflection be a weighted superposition of 
admissible functions (satisfying the boundary conditions), 

i.e. 



es

j
jjst xAtxz

mod

1

).(),(  Premultiplying Eq.6 by 

)(xk and integrating over the length, the weights jA  are 

determined, and the final static deflection is calculated at 
each time step. 

 
4. Results. 

4.1 Free Vibration 
Starting with a classical-ended uniform Euler-

Bernoulli beam without any axial load, the first 
complication included is the variation of the end fixity. A 
simply supported beam has 0% fixity, while a clamped-
clamped beam has 100% fixity. The %fixity stands for the 
ratio of end tensile stresses developed in a beam, as 
compared to the end tensile stress developed for a 
clamped-clamped beam. Increasing the fixity increases 
the modeshape curvature (Fig.4) and the natural 
frequencies (Table 1) of the beam.  

 
Fig.3 Beam modeshapes for various end fixities. 

 
Table 2 : First 10 natural frequencies of Euler-Bernoulli beams 

with intermediate fixities. 
Fixity 
Modes 

0% 22% 40% 55% 70% 90% 100% 

1 3.1416 3.5768 3.8974 4.1557 4.3737 4.6141 4.7300 

2 6.2832 6.5466 6.8077 7.0682 7.3293 7.6682 7.8377 

3 9.4248 9.6127 9.8250 10.0657 10.3387 10.7463 10.9739 

4 12.5664 12.7120 12.8850 13.1053 13.3749 13.8283 14.1093 

5 15.7080 15.8267 15.9769 16.1718 16.4314 16.9148 17.2499 

6 18.8496 18.9497 19.0802 19.2561 19.5031 20.0053 20.3804 

7 21.9912 22.0778 22.1929 22.3528 22.5867 23.0994 23.5160 

8 25.1327 25.2090 25.3120 25.4582 25.6793 26.1969 26.6516 

9 28.2743 28.3425 28.4356 28.5700 28.7791 29.2974 29.7872 

10 31.1459 31.4775 31.5625 31.6869 31.8847 32.4013 32.9253 

 
Inclusion of axial loads changes the natural 

frequencies, without affecting the beam modeshapes. 
Tensile force increases the natural frequencies, while a 
compressive force reduces them, as shown in Table 3. 
Inclusion of shear deformation and rotary inertia reduced 
the natural frequencies, as shown in Table 4. 
 

Table 3 : First 5 natural frequencies of axially-loaded Euler-
Bernoulli beams with intermediate fixities. 

N = -0.8*Pcr Fixity 0% 22% 55% 70% 100% 

Mode 1 2.103 3.0391 3.8315 4.0882 4.4706 

 
2 5.9426 6.2487 6.8298 7.1106 7.6423 

 
3 9.2082 9.409 9.8875 10.1721 10.8238 

 
4 12.4064 12.5576 12.964 13.2409 13.9878 

 
5 15.5809 15.7025 16.0552 16.3196 17.1428 

N = Pcr Fixity 0% 22% 55% 70% 100% 

Mode 1 3.7355 4.0215 4.475 4.6641 4.9834 

 
2 6.6433 6.8695 7.3356 7.5771 8.0622 

 
3 9.6761 9.8504 10.2759 10.5362 11.1531 

 
4 12.7581 12.8974 13.2757 13.5369 14.257 

 
5 15.8626 15.9779 16.3141 16.5679 17.3699 

 
Table 4 : First 5 natural frequencies of axially loaded 

Timoshenko beams with intermediate fixities. 
N = 0 Fixity 0% Fixity 55% Fixity 100% 

Mode 1 3.1392 4.1523 4.7162 

Mode 2 6.2643 7.0465 7.8104 

Mode 3 9.3619 9.9979 10.893 

Mode 4 12.4196 12.9518 13.9321 

Mode 5 15.4272 15.8825 16.9187 

N = -0.8Pcr Fixity 0% Fixity 55% Fixity 100% 

Mode 1 2.0966 3.8259 4.4638 

Mode 2 5.9214 6.8051 7.6117 

Mode 3 9.1421 9.8161 10.7388 

Mode 4 12.2556 12.806 13.8055 

Mode 5 15.2951 15.7606 16.8107 

N = Pcr Fixity 0% Fixity 55% Fixity 100% 

Mode 1 3.7338 4.4733 4.981 

Mode 2 6.6264 7.3166 8.0384 

Mode 3 9.6164 10.2121 11.077 

Mode 4 12.6159 13.1273 14.0857 

Mode 5 15.5876 16.031 17.0508 
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4.2 Forced Vibration 
The first two modes are used to generate the total 

deflection of the beam, subject to two different 
configurations of the transient loads.  The mode-
summation method yields the following matrices for the 
generalized mass GM, generalized moment of inertia GR, 
generalized flexural stiffness GK, generalized shear 
stiffness GS, and generalized axial loads GN (Table 5 and 
table 6). 
 

Table 5 : GM, GR, GN for 2x2 modes. 
G 
M 

  
G 
R 

  
G 
N 

107  

 1 2  1 2  1 2 
1 1.8732 -0.0000 1 0.0040 -0.0000 1 -0.2353 0.1090 
2 -0.0000 2.0848 2 -0.0000 0.0075 2 0.1090 -0.2353 

Table 6 : GK, GS for 2x2 modes. 
GK   GS   

 1 2  1 2 
1 -0.2292*107 0.0000*107 1 0.4500*106 -0.0001*106 
2 0.0000*107 -1.1985*107 2 0.0000*106 4.9065*106 

 
The principal coordinates qj(t) have been generated by the 
numerically stable Euler’s implicit-explicit scheme, as 
functions of time, for different speeds of the transient 
force. The principal coordinates when premultiplied by 
the respective modeshapes, and superposed, generates the 
total beam deflection as a function of space and time 
z(x,t).  
The maximum dynamic deflection is normalized by the 
maximum static deflection to generate the Dynamic Load 
Factor (DLF), which is generated as a function of the non-
dimensional wetting time τ. The numerator and the 
denominator may occur at different locations, and at 
different time instants. The DLF is defines as : 

 
.

),(

),(










txzMax

txz
MaxDLF

st

 

4.2.1 Uniform Load 
Fig.5 shows the generalized force for the first 

five modes of a CC beam, at τ = 0.5, as a function of time. 

The force is a uniform stretching load, and hence spatially 
aligns itself only with the odd modeshapes. The even 
modes give zero generalized force after the load has 
completely swept across. 
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Fig.5  GF vs. time for the first 5 modes of a CC beam, at τ 

= 0.5. 
 

The dynamic and static deflections at the 
midpoint of the beam, for the uniform stretching load, as a 
function of time, for τ = 0.5 and 2.5 are plotted as follows 
in Fig.6. For τ = 0.5, as the load sweeps across quickly, 

the maximum static deflection is reached quickly, and the 
dynamic overshoot is about 90% higher than the 
corresponding static deflection. For τ = 2.5, as the load 

sweeps across the beam slowly, the maximum static 
deflection is reached later, and the dynamic overshoot is 
hardly 5% of the static mean.  

Fig.7 shows the dynamic loading factor DLF vs. 
τ (the non-dimensionalized wetting time) for a uniform 
Timoshenko beam, without axial load, for various end 
fixities and damping ratios δ. Increase of end fixities 

makes the beam stiffer (i.e. increases the natural 
frequencies), and hence stretches the τ-axis if the plot. 
Larger values of τ indicate a stiffer beam (or massless 

beam) or a large wetting time, i.e., a slow transition of the 
moving loads. In this zone of the non-dimensionlized 
time-scale, the response is quasi-static, i.e. the DLF is 
around 1.0. Decreasing the τ increases the dynamic 

behavior of the beam, leading to larger DLF. Here, we 
have very fast moving loads, or a very tender beam (or 
massy beam). For τ ≤ 2, the dynamic response becomes 

increasingly prominent, showing considerable overshoots 
above the static analysis. 
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Fig.6  Dynamic z(L/2,t) & static deflection zst(L/2,t) for CC 
beam, for uniform loading at τ = 0.5, 2.5; for 0% damping. 
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Fig.7  DLF vs. τ for a Timoshenko beam under uniform load, 

0% and 5% damping. 
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At smaller τ the DLF steeply rises to asymptote 

to ~ 2.00, which is the DLF for a uniformly distributed 
load instantaneously acting on the beam. The response for 
τ < 1 can be said to be a slamming-response, which is 
somewhat restricted by the damping. The response at zero 
damping provides the upper limit of the response 
characteristic for a range of τ. Inclusion of structural 
damping reduces the first dynamic overshoot over the 
static deflection, and hence the dynamic zone of the DLF 
(0<τ<2) sees a stunted DLF. Damping also smoothens the 
DLF characteristic in the quasi-static zone.  
The DLF become exactly 1.0 at regular intervals : e.g. for 
a SS beam, DLF = 1.0 at τ = 1.5, 2.5, 3.5, 4.5, and so on. 

For a CC beam, the first DLF=1.0 occurs at τ = 1.85.  
Inclusion of axial tension in the beam vibration 

analysis is practically relevant, since marine structural 
members are constantly under axial loads due to static 
pre-deflections, hogging/sagging of the keel plate, 
compressive loads on the bulkheads due to derricks, etc. 
Several members of a marine craft may be pre-stressed 
due to rolling (during fabrication). The magnitude of the 
tensile force is equal to the critical buckling load, as given 
in table. The value of the critical load, as shown in table 
7, is known for the classical end conditions, i.e. for SS 
and CC beams.  The critical load magnitude for the 
intermediate end fixities are calculated through linear 
interpolation. Greater the end fixity, larger is the critical 
buckling load. 
 

Table 7   Axial tension applied on the beam 
% Fixity 0% 55% 70% 100% 

Tension 
(N) 2

2

L

EI
 

2

265.2

L

EI
 

2

21.3

L

EI
 

2

24

L

EI
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Fig.8  DLF vs. τ for an (tensile) axially loaded Timoshenko 

beam under uniform load, 0% and 5% damping. 
 

Fig.8 shows the dynamic loading factor DLF vs. 
τ (the non-dimensionalized wetting time) for a uniform 
Timoshenko beam, with axial tensile load N, for various 
end fixities and two damping ratios δ = 0% and 5%.  
Axial tension stiffens the dynamic behavior of the beam, 
thereby squeezing the range of the dynamic behavior of 

the beam. E.g., for an SS beam, the first DLF = 1 occurs 
at τ = 1.5 without tension; but it occurs sooner, at τ~1.05, 

with axial tension. Again, for a CC beam, the first DLF = 
1 occurs at τ = 1.85 without tension; but it occurs sooner, 

at τ~1.3, with axial tension. 
By intuition, compression should stretch the τ-scale of the 
DLF plot, thereby increasing the range of τ which shows 

dynamic behavior.  
 
Impact Load.  

Fig.9(a) shows the sweeping impact load at a 
deadrise angle β = 5 degree. The keel pressure remains a 
constant at x = 0 location, while the peak pressure moves 
across the length of the beam at a speed Vπ/2sinβ. The 
spatial configuration of the load becomes nearly a 
uniformly distributed load after a long time. The 
generalized force for the impact stretching load, against 
the five modeshapes, as a function of time, at τ = 0.5, is 
plotted as follows in Fig.9(b). The force aligns itself 
spatially with the odd modes, while the even modes 
produce a zero generalized force after the impact has 
swept across. Fig.10 shows the corresponding dynamic 
and static deflections at the midpoint of the beam, as 
functions of time, for a simply-supported (SS) 
Timoshenko beam, at a deadrise angle of 5 degrees, 0% 
damping. 

Fig.11 shows the dynamic deflection and the 
negative of the static deflection, at five different time 
instants as a function of length at τ = 0.5, for a deadrise 

angle of β = 5 degrees. For 0 < τ < 0.5, the impact already 

sweeps through and the static deflection already peaks, 
before the dynamic deflection rises to its maximum.  
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

Length

Im
p
a
c
t 

P
re

ss
u
re

 f
(x

,t
)

 0 0.005 0.01 0.015 0.02
-50

-25

0

25

50

75

100

Time (sec)

G
e
n
e
ra

li
z
e
d
 

fo
rc

e
 (

t)
  
 

 
Fig.9 Transient impact force F(x,t) and generalized force GF(t) 

at β = 5, τ = 0.5, for a SS beam. 
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Fig.10  Dynamic z(L/2,t) & static deflection zst(L/2,t) for SS 
beam, for impact loading at τ = 0.5; for 0% damping, at β = 5 

degrees. 
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Fig.11 Dynamic deflection and (-) Static deflection at β = 5, τ = 

0.5, for a SS beam. 
 

0 0.5 1 1.5 2 2.5 3 3.5 4
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Non-D splash time

D
y
n
a
m

ic
 L

o
a
d
 F

a
c
to

r

 

 

SS
55% fixity
70% fixity
CC
SS (5% damping)
55% fixity (5% damping)
70% fixity (5% damping)
CC (5% damping)

 
Fig.12 DLF of a Timoshenko beam at β = 5 degrees. 

 
Fig.12 shows the DLF of a Timoshenko beam, at 

a deadrise angle β = 5 degrees; at a two different damping 
ratios δ = 0%, 5%. The time-scale is non-dimensionalized 
with respect to the deadrise angle, and hence the DLF 
characteristic is almost the same for a range of deadrise 
angles. Between 1 < τ < 2.5, a smaller deadrise angle 

produces a greater DLF due to more severe and 
concentrated impact pressure. A greater deadrise angle 
smears and spreads the impact pressure distribution, 
thereby producing a slightly smaller DLF. Beyond τ = 

2.5, all the deadrise angles produce a quasi-static 
behavior.  
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Fig.13 DLF vs. τ for an (tensile) axially loaded Timoshenko 

beam under impact load, 0% damping, β = 5 degrees. 
At very low values of τ, the DLF sharply drops 

and asymptotes to zero. The load sweeps across too fast 
for the beam to dynamically react, whereas the static 

analysis over-predicts the deflection. Hence their ratio 
decimates, for all end fixities and axial loads. Damping 
reduces the maximum DLF. 

Fig.13 shows the dynamic loading factor DLF vs. τ 

(the non-dimensionalized wetting time), at β = 5 degrees, 

for a uniform Timoshenko beam, with axial tensile load N 
(given in Table 7), for various end fixities and no 
damping. Tension compresses the τ-axis, with the 
dynamic response zone shortening to 0.5<τ<1.5. In this 

zone, greater end fixity produces a larger dynamic 
amplification. For τ<0.5, the behavior is consistent for all 
end fixities and axial loads.  
 
5. Conclusions. 

 
The designer aims to design structure with the 

boundary conditions and, stiffness and damping such that 
the composite time-scale τ is greater than 2.5 for the most 

probable impact velocities. To operate in the quasi-static 
range, the forcing speed should be low, or the natural 
frequency of the beam must be high. A craft meant for 
inland operations (i.e. calm waters) can afford a softer 
structure, where slamming is less common. A sea-going 
vessel, on the other hand would require a stiffer bottom 
structure to ensure a quasi-static response. High-speed 
vessels, though use mostly in calm waters, needs stiffer 
material, since the varying dynamic lifts (partially 
supporting the craft weight) cause repeated slamming of 
the bow at high impact speeds. 
 
Nomenclature 
x Independent space variable along the beam 
T Independent variable in time 
z(x,t) Dynamic flexural deflection of the beam 
zst(x,t) Dynamic flexural deflection of the beam 
Φ(x,t) Pure-bending slope of the beam 
zst  Static flexural deflection of the beam 
L Length of the beam 
ρ Density of the beam material 
E Elastic modulus of the beam material 
I Second moment of area of the beam cross-

section about the horizontal neutral axis. 
G Shear modulus of the beam material 
μ Shear correction factor (5/6 for rectangular 

cross-section) 
A Cross-sectional area of the beam 

LK  Spring constant on the left end 

RK  Spring constant on the right end 

)(xj  Beam modeshape 

)(xj  Pure bending slope modeshape 

δj,γj jth frequency parameter pair for Timoshenko 
beam. 

qj(t) Principal coordinate 
F(x,t) External transient load 
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ω n1 Fundamental natural frequency of the beam 
Tn1 Fundamental natural period of the beam 
Tsp Splash time 
τ Non-D splash time 

V Vertical impact velocity of slamming 
β Deadrise angle of the craft 
DLF Dynamic Loading Factor 
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