Matrix Formulation of NTRU Algorithm using multiple Public keys from Matrix Data Bank for High Degree polynomials

Vinay Kumar, Mohan Rao Mamdikar, Dr. D. Gosh

Abstract

In many business sectors sending secure information over public channels has become a challenging task. Data encryption is not the most efficient method to counter attacks for adversaries. One form of encryption called the symmetric key encryption uses the same key for encryption at sender's end and for decryption at the receiver's end. Worldwide encryption standards such as DES and AES are used in Government and public domains. However symmetric key encryptions are prone to attacks by intruders. Asymmetric key encryption has been proposed in the Jofferey et al. [4] wherein the key to be used to send a message to R is made public and R uses his own private key to decrypt the encrypted message. NTRU is one such Public key Cryptosystem (PKCS), which is based on polynomial Ring Theory. The security of NTRU depends on the lattices. Several studies have suggested that it is difficult to know whether a polynomial is invertible or not. Nayak et al.[2] introduced a new method as a matrix solution to solve the problem. In this paper we propose the usage of multiple public keys to encrypt a text message. This method will be more secure and robust as there will be a unique private key for each public key. We also discuss about the safe exchange of the public key sequence numbers along with encrypted text block which is essential for correct decryption by the receiver. The security is further enhanced in the proposed method by taking high degree of polynomials from the matrix data bank created by us $N=225$ i.e. 15×15 in which each matrix has an inverse and we use a matrix from data bank randomly. The method is extensively tested algorithm design and proved and faster since we can encrypt and decrypt a large number of blocks simultaneously.

Keywords—NTRU, Private Key, Public Key, Encryption, Decryption, Modular Operation, matrix databank.

I. Introduction

The NTRU encryption system and the related signature scheme are both built on polynomial algebra. The basic object

Vinay Kumar

National Institute of Technology, Durgapur India

Mohan Rao Mamdikar
National Institute of Technology, Durgapur India

Dr. D. Ghosh

National Institute of Technology, Durgapur India
are truncated polynomials in the ring $\mathrm{R}=\mathrm{Z}[\mathrm{x}] /\left(\mathrm{x}^{\mathrm{N}-1}\right)$ and the basic tool is the reduction of polynomials with respect to two relatively prime moduli. The security of the systems is based on the difficulty of finding a "short" factorization for such polynomials. This latter problem is equivalent to finding a short vector in a certain N dimensional lattice, a commonly known and also widely studied NP hard problem. NTRU polynomials $\mathrm{a}(\mathrm{x})$ are frequently reduced modulo p and q , the small and large moduli. The large modulus q is an integer, so reduction of $a(x)=a_{0}+a_{1} X+a_{2} x^{2}+\ldots--+a_{N-1} X^{N-1} \bmod q$ means just reduction of each ai modulo q. The small modulus p can also be an integer. It is required that p and q are relatively prime. The main objects in the systems are "small" polynomials; i.e. polynomials with small coefficients. The public key h is defined by an equation $f * h=p * g(\bmod q)$, where f and g are small polynomials. The polynomial f should always have inverses modulo p and $\mathrm{q}, \mathrm{f} * \mathrm{f}_{\mathrm{p}} \equiv 1(\bmod \mathrm{p})$ and $\mathrm{f}^{*} \mathrm{f}_{\mathrm{q}} \equiv 1(\bmod \mathrm{q})$. Moreover, the parameters N, p and q are also public, and can be used as common domain parameters for all users. Polynomials f and g are private to the key owner. The polynomial g is needed only in key generation. The owner Alice chooses two small polynomials f and g in the ring of truncated polynomials and keeps f and g private. He then computes inverse of $f(\bmod p)\left[f_{p}\right]$ and inverse of $f(\bmod q)$ [fq_{q}, where p and q are relatively prime to each other. He then computes $\mathrm{h}=\mathrm{p} * \mathrm{f}_{\mathrm{q}}{ }^{*} \mathrm{~g}(\bmod \mathrm{q})$, which becomes the public key for Alice and the pair of polynomials f and f_{p} forms his private key pair. The message is also represented in the form of a truncated polynomial. Let it be m. The sender Bob encrypts using the public key of Alice i.e., h as $E=h * R+m(\bmod q)$, where R is a random polynomial basically used to obscure the message. This encrypted message may be sent in a public channel. Alice decrypts the encrypted message using his private key pair by performing the following operations:
$\mathrm{A}=\mathrm{f} * \mathrm{E}(\bmod \mathrm{q})$
$B=A(\bmod p)$
$C=f_{p} * B(\bmod p)$ and C is the original message:
$\mathrm{C}=\mathrm{f}_{\mathrm{p}} *\left[\mathrm{f} *\left(\mathrm{p} * \mathrm{f}_{\mathrm{q}} * \mathrm{~g} * \mathrm{R}+\mathrm{m}\right)(\bmod \mathrm{q})\right](\bmod \mathrm{p})=\mathrm{m}$ using
The identities $\mathrm{f} * \mathrm{f}_{\mathrm{p}}=1$ and $\mathrm{f} * \mathrm{f}_{\mathrm{q}}=1$

iI. Proposed Algorithm

In this paper we propose to use multiple set of publicprivate key pairs in form of matrices of order $\mathrm{N} \times \mathrm{N}$ as compared to a single key pair used by Nayak et al.[2].The public key sets are generated by the owner of the keys and made available to everyone. The sender who wishes to send a message to the receiver will store these public keys in an array
and choose them in a random sequence to encrypt the text message to be sent to the receiver. Each of these public keys will have a unique corresponding private key which will be known only to the receiver of the message. This same will be used for decryption to get back the original text. The owner Alice first creates a set of public/private key pair. He first randomly chooses two matrices f and g consisting of elements $\{1,0$, and -1$\}$. Matrix f should be an invertible matrix (modulus p) i.e. determinant of f should be 1 and the number of 1 's in f should be one more than number of -1 's. Similarly the number of 1 's and -1 's in g should be equal but g 's determinant need not necessarily be 1 . Alice keeps the matrices f and g private, since anyone who knows either one of them will be able to decrypt messages sent to Alice. Alice's next step is to compute the inverse of f modulo $q\left[f_{q}\right]$ and the inverse of f modulo p [f_{p}]. Alice's private key is pair of matrices f and f_{p}. Finally Alice computes $h=p^{*} f q^{*} g$ (modulo q), which is his public key. Similarly he creates other sets of public and private key pairs. The proposed algorithm has been designed in three stages:
First stage - Key generation, second stage -procedure for encryption and third stage- procedure decryption as follows.

```
Algorithm: NTRU with multiple message blocks
{KEY GENERATION}
1: Generate random matrix f and g
2: compute inverse f(\operatorname{mod}p)[fp] and f(\operatorname{mod}q)[fq]
3: compute public key h=(p*\mp@subsup{f}{q}{}*g)(mod q)
{ENCRYPTION}
4: text message convert into ternary representation:
5: replace all 2's with -1
6: generate random matrix R
7: compute encrypted message E =h*R+m(mod q)
8: stores message in array with index (if possible)
{DECRYPTION}
9: compute a (mod q) if possible
10: compute A=f*E (mod q)
11: choose coefficients of A into -q/2 to q/2
12: compute B = A *(mod q)
13: compute C = f
message
```


III. Proof of Algorithm

Bob's encrypted text block $\mathrm{E}=\mathrm{h} * \mathrm{R}+\mathrm{m}(\bmod \mathrm{q})$, where h is the Alice's 1st public key, R is the blinding matrix used by sender Bob and m is the original text message. But Alice doesn't know the values of R and m . Alice 's first step is to compute $\mathrm{f} * \mathrm{E}$, where f is the private key corresponding to his public key h and then reduce the resultant modulo q. Since A's public key h was actually formed by multiplying p * fq * g, and reducing its coefficients modulo q i.e. $\mathrm{h}=\mathrm{p}{ }^{*} \mathrm{fq} *$ g (modulo q), where fq is inverse of f (modulo q) and g is the 2nd matrix corresponding to f generated by Alice during the private-public key generation process. So although Alice
doesn't know R and m , when he computes $\mathrm{A}=\mathrm{f} * \mathrm{E}$ (modulo q), he is actually performing the following computation and the details of the computation is itself explanatory to establish that Alice is able to decrypt original message m back.

$$
\begin{aligned}
A & =f * E(\text { modulo } q) \\
& =f^{*}\left(R^{*} h+m\right)(\text { modulo } q) \\
& {\left[\text { Since } E=R^{*} h+m\right. \text { (modulo q)] }} \\
& =f^{*}\left(R^{*} p^{*} f q^{*} g+m\right)(\text { modulo } q) \\
& {\left[\text { SSince } h=p^{*} f q^{*} g(\text { modulo q) }]\right.} \\
& =p^{*} R^{*} g+f^{*} m(\text { modulo q) }
\end{aligned}
$$

[Since $f^{*} f q=I$ (modulo q where I is the identity matrix]

$$
\begin{aligned}
& \text { Next Alice computes } \\
& \begin{array}{l}
B=A(\bmod p) \\
B=\left(p^{*} R^{*} g+f^{*} m\right)(\bmod p) \\
=f^{*} m(\bmod p) \\
\quad\left[\text { Since } p^{*} R^{*} g(\bmod p)=0\right] \\
\text { The last step is to find: } \\
C=f q^{*} B(\bmod p) \\
=f q^{*} f^{*} m(\bmod p) \\
=m(\bmod p) \quad\left[\text { since } f_{p} * f(\bmod p)=I\right] \\
=m \quad \text { Q.E.D. }
\end{array}
\end{aligned}
$$

iv. Illustrations of the proposed Algorithm

A. Generation of multiple public and private key using matrix databank

The owner Alice uses the following parameters for obtaining the Public key and private key pair for encrypting the Plain Text message based on algorithm from step 1 to 3 . f $=15 \times 15$ matrix, $g=15 \times 15$ matrix, $\mathrm{p}=3$ and $\mathrm{q}=128, \mathrm{~N}=$ 225. f and g are two randomly generated matrices consisting of -1 's, 0 's and +1 's. The number of +1 's is more than the number of -1 's in f and the determinant of f equals to 1.Matrix g consists of equal number of -1 's and +1 's as shown in table I and II.

TABLE I. RANDOM MATRIX f
$\left|\begin{array}{ccccccccccccccc}0 & 1 & 1 & -1 & 1 & 0 & 0 & -1 & -1 & 0 & -1 & -1 & 0 & 0 & 1 \\ 1 & 0 & -1 & 0 & 0 & -1 & 1 & 0 & -1 & -1 & 0 & 1 & 1 & -1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & -1 & 0 & -1 & 1 & 0 & 1 & 1 & -1 & 0 \\ -1 & 0 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & 0 & 1 & 0 & 0 & 1 & 1 \\ -1 & 0 & 1 & 0 & -1 & -1 & 1 & -1 & 1 & 0 & -1 & 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 & 1 & 1 & -1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & -1 \\ 0 & -1 & -1 & 0 & -1 & 1 & 0 & 1 & 0 & 0 & 0 & -1 & 1 & -1 & 1 \\ -1 & -1 & 0 & 1 & 1 & 0 & -1 & 1 & 0 & 1 & 0 & -1 & 1 & 1 & -1 \\ 1 & 0 & -1 & -1 & 1 & -1 & 0 & -1 & 0 & 0 & 0 & -1 & 1 & -1 & 0\end{array}\right|$
$\left|\begin{array}{ccccccccccccccc}0 & 0 & 1 & 0 & -1 & -1 & 0 & 1 & -1 & -1 & -1 & 1 & -1 & -1 & 0 \\ 1 & 1 & 1 & -1 & 1 & 0 & 0 & 0 & 0 & -1 & 1 & 1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 & -1 & 1 & 0 & 1 & 1 & -1 & -1 & -1 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 & -1 & 0 & 0 & 1 & 0 & -1 & 1 & 1 & -1 & -1 \\ -1 & 1 & 0 & -1 & 0 & 1 & -1 & 0 & 0 & 1 & 0 & 1 & 0 & -1 & 0\end{array}\right|$

TABLE II. $\quad 2^{\text {ND }}$ RANDOM MATRIX g

$$
\left|\begin{array}{ccccccccccccccc}
-1 & 0 & 1 & -1 & 0 & -1 & 1 & -1 & 1 & 1 & -1 & 0 & -1 & 1 & 1 \\
1 & 1 & 0 & -1 & -1 & 1 & 0 & 1 & -1 & 0 & 0 & -1 & 0 & -1 & 0 \\
1 & 1 & -1 & 1 & -1 & -1 & 1 & 0 & -1 & 0 & -1 & -1 & 1 & 1 & -1 \\
0 & 0 & -1 & 1 & 0 & 0 & -1 & -1 & 0 & -1 & 0 & -1 & 1 & 1 & -1 \\
1 & -1 & 1 & 1 & 0 & 0 & 0 & -1 & 1 & -1 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1 & 1 & -1 & -1 & 0 & -1 & 0 & -1 & 1 & 0 & -1 & 1 \\
-1 & 0 & 1 & -1 & 1 & 1 & -1 & 1 & 1 & 0 & -1 & 1 & 1 & 1 & 1 \\
-1 & 1 & 0 & 0 & 1 & 1 & -1 & 0 & 0 & 0 & -1 & 1 & -1 & -1 & -1 \\
1 & 0 & 0 & -1 & 1 & 0 & -1 & 1 & 1 & 1 & 1 & 1 & 0 & -1 & 0 \\
1 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & -1 & 0 & 0 & -1 & 0 & 0 & 1 \\
1 & -1 & 1 & 0 & 0 & -1 & 0 & -1 & -1 & 1 & -1 & 1 & -1 & -1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & -1 & -1 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 1 & -1 \\
0 & 0 & 1 & -1 & 1 & 1 & -1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & -1 \\
1 & 0 & -1 & 1 & -1 & 1 & -1 & -1 & -1 & 1 & 0 & -1 & -1 & 1 & 0
\end{array}\right|
$$

The parameters f and g are private to Alice where as h and N are known to everyone i.e. public. Alice generates 10 such random f and g pairs ($f 1 ; \mathrm{g} 1$) to (f10; g10). Alice next find the inverse of $f(\bmod p)[f p]$ and $f(\bmod q)[f q]$ as shown in the table III and table IV

TABLE III. Inverse matrix $f p$

$$
\left|\begin{array}{lllllllllllllll}
1 & 1 & 1 & 2 & 1 & 1 & 1 & 2 & 0 & 2 & 1 & 0 & 2 & 0 & 0 \\
0 & 0 & 2 & 1 & 0 & 2 & 1 & 1 & 2 & 1 & 2 & 2 & 0 & 2 & 2 \\
0 & 0 & 2 & 2 & 1 & 2 & 1 & 2 & 0 & 2 & 1 & 1 & 0 & 1 & 0 \\
0 & 2 & 0 & 2 & 1 & 1 & 2 & 0 & 1 & 1 & 0 & 2 & 2 & 2 & 1 \\
1 & 2 & 1 & 1 & 0 & 2 & 2 & 0 & 0 & 1 & 2 & 1 & 1 & 2 & 0 \\
2 & 2 & 1 & 2 & 1 & 0 & 2 & 2 & 2 & 1 & 0 & 1 & 1 & 0 & 2 \\
0 & 1 & 2 & 2 & 1 & 2 & 1 & 0 & 1 & 1 & 0 & 2 & 0 & 0 & 2 \\
2 & 0 & 0 & 2 & 2 & 2 & 0 & 2 & 1 & 1 & 1 & 2 & 1 & 1 & 0 \\
1 & 1 & 2 & 0 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 1 & 2 \\
1 & 2 & 2 & 1 & 2 & 2 & 2 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
2 & 1 & 0 & 0 & 2 & 1 & 1 & 0 & 2 & 0 & 2 & 1 & 1 & 0 & 2 \\
2 & 0 & 0 & 1 & 1 & 2 & 0 & 0 & 2 & 0 & 2 & 2 & 2 & 0 & 0 \\
2 & 1 & 0 & 2 & 0 & 0 & 0 & 2 & 2 & 0 & 2 & 0 & 0 & 2 & 1 \\
1 & 0 & 2 & 2 & 1 & 2 & 1 & 1 & 1 & 1 & 1 & 2 & 0 & 0 & 1 \\
1 & 2 & 0 & 1 & 0 & 2 & 1 & 1 & 0 & 0 & 2 & 2 & 1 & 2 & 0
\end{array}\right|
$$

TABLE IV. InVERSE MATRIX f_{q}
$\left|\begin{array}{ccccccccccccccc}4 & 105 & 85 & 26 & 53 & 108 & 44 & 93 & 89 & 26 & 117 & 53 & 98 & 73 & 72 \\ 108 & 12 & 5 & 100 & 125 & 61 & 45 & 11 & 15 & 103 & 123 & 76 & 76 & 115 & 124 \\ 34 & 96 & 24 & 76 & 14 & 81 & 21 & 114 & 68 & 96 & 110 & 97 & 6 & 9 & 20 \\ 94 & 36 & 27 & 12 & 0 & 81 & 40 & 49 & 12 & 28 & 43 & 77 & 55 & 51 & 111 \\ 29 & 70 & 98 & 95 & 71 & 26 & 36 & 3 & 95 & 115 & 36 & 56 & 63 & 21 & 88 \\ 93 & 64 & 103 & 54 & 59 & 7 & 50 & 97 & 77 & 9 & 53 & 5 & 89 & 72 & 98 \\ 7 & 50 & 102 & 56 & 115 & 114 & 96 & 82 & 111 & 70 & 47 & 125 & 0 & 75 & 74 \\ 113 & 51 & 8 & 26 & 66 & 104 & 103 & 92 & 36 & 29 & 77 & 45 & 15 & 117 & 70 \\ 89 & 34 & 93 & 62 & 93 & 127 & 111 & 48 & 60 & 48 & 18 & 48 & 11 & 74 & 4 \\ 42 & 48 & 100 & 25 & 113 & 23 & 81 & 30 & 122 & 127 & 108 & 97 & 10 & 40 & 37 \\ 11 & 103 & 23 & 82 & 12 & 32 & 112 & 80 & 3 & 58 & 77 & 21 & 36 & 81 & 99 \\ 37 & 73 & 13 & 108 & 109 & 4 & 60 & 57 & 120 & 16 & 60 & 102 & 71 & 10 & 1 \\ 1 & 23 & 2 & 86 & 112 & 60 & 122 & 34 & 1 & 40 & 74 & 120 & 43 & 69 & 15 \\ 44 & 6 & 10 & 62 & 113 & 45 & 59 & 102 & 125 & 0 & 9 & 28 & 96 & 35 & 3 \\ 42 & 119 & 40 & 16 & 70 & 49 & 71 & 67 & 56 & 124 & 3 & 64 & 40 & 63 & 56\end{array}\right|$
. Alice then generates his public key h which is made available to everyone using the formula $\mathrm{h}=(\mathrm{p} * \mathrm{fq} * \mathrm{~g})(\bmod$ q) which is given in table V.

TABLE V. MATRIX FOR PUBLIC KEY h

$\left|\begin{array}{ccccccccccccccc}112 & 42 & 39 & 41 & 7 & 96 & 119 & 98 & 84 & 112 & 114 & 14 & 84 & 115 & 42 \\ 124 & 12 & 107 & 46 & 49 & 23 & 20 & 67 & 69 & 8 & 49 & 62 & 112 & 72 & 48 \\ 18 & 67 & 48 & 103 & 4 & 67 & 45 & 74 & 57 & 56 & 44 & 117 & 116 & 84 & 71 \\ 49 & 5 & 89 & 76 & 7 & 122 & 10 & 83 & 37 & 54 & 14 & 98 & 87 & 121 & 33 \\ 87 & 25 & 9 & 101 & 51 & 32 & 111 & 121 & 17 & 76 & 35 & 95 & 22 & 82 & 18 \\ 111 & 57 & 102 & 81 & 19 & 114 & 50 & 69 & 119 & 57 & 84 & 83 & 79 & 11 & 29 \\ 71 & 74 & 78 & 116 & 77 & 122 & 96 & 3 & 30 & 33 & 0 & 30 & 122 & 95 & 18 \\ 25 & 65 & 63 & 72 & 63 & 3 & 89 & 106 & 85 & 125 & 13 & 124 & 19 & 76 & 0 \\ 74 & 79 & 11 & 122 & 64 & 39 & 61 & 81 & 10 & 70 & 12 & 60 & 76 & 5 & 17 \\ 56 & 48 & 32 & 101 & 69 & 74 & 33 & 98 & 65 & 8 & 119 & 119 & 64 & 63 & 40 \\ 127 & 49 & 98 & 64 & 41 & 15 & 28 & 27 & 64 & 44 & 117 & 9 & 41 & 28 & 71 \\ 16 & 48 & 71 & 98 & 113 & 52 & 120 & 27 & 105 & 4 & 95 & 124 & 96 & 31 & 105 \\ 38 & 3 & 119 & 45 & 63 & 82 & 43 & 89 & 112 & 91 & 27 & 114 & 29 & 124 & 8 \\ 41 & 4 & 103 & 74 & 3 & 0 & 53 & 123 & 1 & 89 & 109 & 108 & 91 & 79 & 101 \\ 4 & 25 & 29 & 112 & 123 & 93 & 80 & 90 & 112 & 85 & 101 & 119 & 59 & 60 & 12\end{array}\right|$

Alice generates 10 such public keys $\left(\mathrm{h}_{1}, \mathrm{~h}_{2}, \mathrm{~h}_{3}, \mathrm{~h}_{4}, \mathrm{~h}_{5}, \mathrm{~h}_{6}, \mathrm{~h}_{7}, \mathrm{~h}_{8}, \mathrm{~h}_{9}, \mathrm{~h}_{10}\right)$ using different sets of f and g . This public key is made available to everyone and anyone who wishes to send message to Alice can use this public key to encrypt his text message then send it to the receiver Alice. Alice's private key is a pair of matrices f and f. There will be 10 such private key pairs each corresponding to a unique public key.

B. Proposed method for encryption in the algorithm

Now according to proposed algorithm, the sender Bob wants to send a large text message to Alice using Alice's public keys. For this Bob breaks down the plain text message into smaller blocks, each of size equal to dimension of Alice's public key. Bob next chooses the 1st sub text block to be encrypted (of length 45 characters) and finds the ASCII values corresponding to each character of the chosen sub text. Bob then converts ASCII values of each character to its corresponding ternary form i.e. base 3 form. This ternary representation of ASCII value of each character is a 5 bit number consisting of 0 's, 1 's and 2 's. Bob next replaces all the 2 's in the ternary representation with -1 . Bob then arranges the resultant ternary representations of ASCII values into a 15 x 15 matrix, where each row represents ternary forms of three characters (the first 5 bits for the 1st character, the next 5 bits for 2 nd character and the last 5 bits for the $3{ }^{\text {rd }}$ character). Since there are 15 such rows and each row consists of 3 characters Bob can represent 45 characters at a time using a 15×15 matrix.
For instance let the text message to be encrypted be "In many business sectors sending a secure messGe over public channels has become a challenging task. Data encryption is the most efficient method to counteract attacks by adversaries. One form of encryption is to use the same key by the sender for encryption as well as decryption. Worldwide encryption standards such as DES and AES are used in Government and public domains. However symmetric key encryption is prone to attacks by symmetric intruders. Key encryption has been proposed in the literature wherein the key to be used for encryption is different from that used for decryption."

Then the first sub matrix $\mathrm{m}=$ "In many business sector sending a secure mess". The ASCII values and ternary representations corresponding to the given text message in table VI.

TABLE VI. ASCII VALUES and ternary representation

Character	ASCII Vaule of character	Ternary representation of ASCII value
a	32	01020
b	97	10121
c	99	10122
d	100	10200
e	101	10201
g	103	10202
i	105	10211
m	109	11001
n	110	11002
o	111	11010
p	112	11011

r	114	11020
s	115	11021
t	116	11022
u	117	11100
v	118	11101
w	119	11102
y	121	11111
I	73	02201

Bob next rearranges these ternary representations of ASCII values to obtain 15 X 15 matrix m form in the table VII

TABLE VII. Sub text message m
$\left|\begin{array}{lllllllllllllll}0 & 2 & 2 & 0 & 1 & 1 & 1 & 0 & 0 & 2 & 0 & 1 & 0 & 1 & 2 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 2 & 1 & 1 & 1 & 0 & 0 & 2 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 2 & 1 & 0 & 1 & 2 & 2 \\ 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 2 & 1 & 1 & 0 & 2 & 2 & 0 \\ 1 & 1 & 0 & 0 & 2 & 1 & 0 & 2 & 0 & 2 & 1 & 1 & 0 & 2 & 1 \\ 1 & 1 & 0 & 2 & 1 & 0 & 1 & 0 & 1 & 2 & 1 & 1 & 0 & 2 & 1 \\ 1 & 0 & 2 & 0 & 2 & 1 & 0 & 2 & 0 & 0 & 1 & 1 & 0 & 2 & 2 \\ 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 2 & 0 & 0 & 1 & 0 & 1 & 2 \\ 1 & 1 & 0 & 2 & 1 & 1 & 0 & 2 & 0 & 2 & 1 & 1 & 0 & 0 & 2 \\ 1 & 0 & 2 & 0 & 1 & 1 & 0 & 2 & 2 & 0 & 1 & 1 & 0 & 0 & 2 \\ 1 & 0 & 2 & 1 & 1 & 0 & 1 & 0 & 1 & 2 & 1 & 0 & 1 & 2 & 1 \\ 0 & 1 & 0 & 1 & 2 & 1 & 1 & 0 & 2 & 1 & 1 & 0 & 2 & 0 & 2 \\ 1 & 0 & 2 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 2 & 0 \\ 1 & 0 & 2 & 0 & 2 & 0 & 1 & 0 & 1 & 2 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 2 & 0 & 2 & 1 & 1 & 0 & 2 & 1 & 1 & 1 & 0 & 2 & 1\end{array}\right|$

Bob next replaces all the 2 's in m with -1 's to obtain m as given in table VIII.

TABLE VIII. SUB TEXT MESSAGE AFTER REPLACING 2's WITH -1
$\left|\begin{array}{ccccccccccccccc}0 & -1 & -1 & 0 & 1 & 1 & 1 & 0 & 0 & -1 & 0 & 1 & 0 & 1 & -1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & -1 & 1 & 1 & 1 & 0 & 0 & -1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & -1 & 1 & 0 & 1 & -1 & -1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & -1 & 1 & 1 & 0 & -1 & -1 & 0 \\ 1 & 1 & 0 & 0 & -1 & 1 & 0 & -1 & 0 & -1 & 1 & 1 & 0 & -1 & 1 \\ 1 & 1 & 0 & -1 & 1 & 0 & 1 & 0 & 1 & -1 & 1 & 1 & 0 & -1 & 1 \\ 1 & 0 & -1 & 0 & -1 & 1 & 0 & -1 & 0 & 0 & 1 & 1 & 0 & -1 & -1 \\ 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & -1 & 0 & 0 & 1 & 0 & 1 & -1 \\ 1 & 1 & 0 & -1 & 1 & 1 & 0 & -1 & 0 & -1 & 1 & 1 & 0 & 0 & -1 \\ 1 & 0 & -1 & 0 & 1 & 1 & 0 & -1 & -1 & 0 & 1 & 1 & 0 & 0 & -1 \\ 1 & 0 & -1 & 1 & 1 & 0 & 1 & 0 & 1 & -1 & 1 & 0 & 1 & -1 & 1 \\ 0 & 1 & 0 & 1 & -1 & 1 & 1 & 0 & -1 & 1 & 1 & 0 & -1 & 0 & -1 \\ 1 & 0 & -1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & -1 & 0 \\ 1 & 0 & -1 & 0 & -1 & 0 & 1 & 0 & 1 & -1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & -1 & 0 & -1 & 1 & 1 & 0 & -1 & 1 & 1 & 1 & 0 & -1 & 1\end{array}\right|$

Bob next chooses a random matrix R consisting of 0's, 1's and -1 's and of same order as f, g and m with equal number of 1 's and -1 's. This is a 'blinding value' which is used to obscure the text message in table IX.

TABLE IX. RANDOM MATRIX r of SAME order of f, g
$\left|\begin{array}{ccccccccccccccc}1 & 1 & 1 & 1 & -1 & -1 & 0 & -1 & 1 & -1 & -1 & -1 & 0 & 0 & -1 \\ 1 & 1 & -1 & 1 & 0 & 1 & 1 & 0 & -1 & 1 & 1 & -1 & 0 & 0 & 0 \\ -1 & -1 & 1 & 0 & -1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & -1 & 1 \\ -1 & -1 & 0 & -1 & 1 & 1 & -1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & -1 \\ -1 & 1 & -1 & 1 & 0 & -1 & -1 & -1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & 0 & 0 & 1 & -1 \\ 1 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & -1 & 0 & -1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 1 & -1 & 1 & -1 & -1 \\ -1 & 0 & 0 & 0 & 0 & -1 & 1 & -1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 & 1 & 0 & 1 & -1 & 1 & 1 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & -1 \\ 0 & -1 & -1 & -1 & -1 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 & -1 & 0 & 1 & 1 & 0 & 0 & -1 & 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & 0 & 0 & -1 & 1 & 0 & 1 & 1 & 0 & -1 & -1 & 1 & -1 \\ 1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & -1 & 1\end{array}\right|$

Bob then encrypts the text message m to obtain the encrypted text E by using formula $\mathrm{E}=(\mathrm{h} * \mathrm{R}+\mathrm{m})(\bmod \mathrm{q})$ as given table X.

TABLE X. ENCRYPTED MATRIX E
$\begin{array}{|llllllllllll|}15 & 32 & 70 & 108 & 116 & 41 & 57 & 92 & 103 & 21 & 123 & 62 \\ 101 & 56 & 107\end{array}$ $\begin{array}{lllllllllllllll}108 & 11 & 111 & 1 & 36 & 86 & 65 & 75 & 1 & 39 & 11 & 17 & 16 & 8 & 12\end{array}$ $\begin{array}{lllllllllllll}5 & 20 & 77 & 15 & 111 & 64 & 105 & 26 & 115 & 76 & 52 & 84 & 103 \\ 38 & 62\end{array}$ $\begin{array}{lllllllllll}81 & 45 & 71 & 54 & 17 & 109 & 118 & 108 & 82 & 113 & 29 \\ 69 & 0 & 55 & 3\end{array}$ $\begin{array}{llllllllllllll}77 & 55 & 21 & 121 & 5 & 78 & 80 & 63 & 39 & 107 & 54 & 20 & 1 & 44 \\ 89\end{array}$ $\begin{array}{llllllllllll}46 & 118 & 7 & 118 & 125 & 49 & 108 & 93 & 79 & 30 & 71 & 107 \\ 19 & 125 & 84\end{array}$ $\begin{array}{lllllllllllll}47 & 56 & 66 & 78 & 17 & 98 & 103 & 113 & 90 & 22 & 123 & 17 & 124 \\ 88 & 76\end{array}$

 $\begin{array}{llllllllllllllllll}16 & 67 & 75 & 118 & 125 & 50 & 118 & 68 & 15 & 50 & 121 & 88 & 115 & 107 & 8\end{array}$ $\begin{array}{lllllllllllll}27 & 92 & 111 & 47 & 86 & 27 & 12 & 14 & 109 & 96 & 79 & 25 & 116 \\ 115 & 88\end{array}$ $\begin{array}{llllllllllllll}67 & 79 & 111 & 34 & 104 & 23 & 52 & 44 & 39 & 52 & 76 & 91 & 121 & 108 \\ 106\end{array}$ $\begin{array}{llllllllllllllllllll}30 & 119 & 84 & 73 & 73 & 33 & 60 & 104 & 126 & 75 & 15 & 106 & 117 & 67 & 108\end{array}$ $\begin{array}{lllllllllllllll}73 & 47 & 28 & 49 & 14 & 95 & 91 & 0 & 29 & 83 & 91 & 91 & 55 & 14 & 74\end{array}$ $\begin{array}{llllllllllllll}62 & 73 & 99 & 124 & 30 & 69 & 93 & 97 & 39 & 82 & 34 & 107 & 49 & 98 \\ 0\end{array}$ | 82 | 97 | 50 | 19 | 73 | 16 | 100 | 25 | 100 | 41 | 66 | 59 | 97 | 106 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 100 | | | | | | | | | | | | | |

Similarly Bob uses other public keys (h2 to h10) along with the correspondingly generated random matrices(R2,R3,R4,R5,R6,R7,R8,R9,R10) to obtain other encrypted sub text matrices blocks (E2,E3,E4, E5, E6, E7, E8, $\mathrm{E} 9, \mathrm{E} 10$) which will be sent to the receiver (Alice) along with sequence number of the public keys used for the encryption of the text blocks. The sequence number can be sent as an array of 10 random numbers. The receiver has to perform the modulo q operation on these numbers to obtain the corresponding sequence numbers. Since only the legitimate
sender and the receiver know the exact value of ' q ' therefore this method ensures the correct and safe exchange of key sequences

c. . Decryption methodology of the Algorithm

The receiver Alice receives the following matrix (1st encrypted message) from the sender (Bob), along with an array of 10 numbers from Bob [257,514,899,388,1157,1414,1927,1032,2441,1162].

Alice chooses the 1st number in an array i.e. 257 and performs a (mod) q operation on it ($q=128$) to obtain value 1 . Hence he comes to know that the 1st public key has been used to encrypt the 1st text block. Similarly he performs the (mod) q operations on all the numbers of array to get the corresponding public key sequence number used for encryption of subsequent sub text blocks.

A next uses his private key f_{1} to compute $D_{1}=f_{1} * E(\bmod$ 128), which is given table XI.

TABLE XI. DECRYPTED MATRIX D_{1}
$\left|\begin{array}{ccccccccccccccc}0 & 118 & 6 & 118 & 121 & 121 & 4 & 126 & 10 & 0 & 6 & 1 & 2 & 120 & 17 \\ 9 & 12 & 7 & 14 & 127 & 8 & 3 & 11 & 119 & 123 & 123 & 121 & 123 & 126 & 123 \\ 19 & 1 & 3 & 1 & 3 & 9 & 4 & 5 & 0 & 8 & 2 & 120 & 120 & 11 & 124 \\ 4 & 1 & 113 & 8 & 126 & 7 & 2 & 2 & 126 & 11 & 125 & 5 & 122 & 6 & 124 \\ 117 & 126 & 3 & 125 & 118 & 2 & 119 & 127 & 3 & 127 & 113 & 3 & 2 & 122 & 3 \\ 3 & 5 & 122 & 124 & 120 & 2 & 5 & 127 & 6 & 123 & 8 & 10 & 5 & 108 & 16 \\ 125 & 123 & 117 & 123 & 126 & 122 & 22 & 4 & 127 & 4 & 126 & 4 & 3 & 113 & 8 \\ 116 & 8 & 117 & 3 & 6 & 12 & 7 & 124 & 117 & 0 & 13 & 4 & 12 & 124 & 0 \\ 119 & 4 & 125 & 7 & 122 & 110 & 2 & 116 & 3 & 118 & 3 & 3 & 7 & 120 & 120 \\ 1 & 3 & 5 & 4 & 120 & 126 & 121 & 2 & 3 & 8 & 117 & 126 & 118 & 1 & 126 \\ 0 & 124 & 7 & 119 & 116 & 2 & 126 & 123 & 15 & 115 & 1 & 9 & 8 & 121 & 9 \\ 118 & 2 & 10 & 0 & 5 & 120 & 126 & 126 & 6 & 4 & 3 & 121 & 3 & 123 & 127 \\ 125 & 120 & 117 & 127 & 124 & 123 & 122 & 127 & 7 & 9 & 2 & 126 & 127 & 3 & 3 \\ 114 & 4 & 126 & 12 & 124 & 118 & 6 & 124 & 126 & 125 & 5 & 0 & 2 & 124 & 114 \\ 6 & 6 & 7 & 3 & 12 & 6 & 2 & 4 & 1 & 2 & 123 & 0 & 122 & 18 & 106\end{array}\right|$

Since Alice is computing D_{1} modulo q , he chooses the coefficients of D_{1} to lie between $-\mathrm{q} / 2$ and $\mathrm{q} / 2$. When Alice reduces the coefficients of $f_{1} * E_{1}(\bmod 128)$, he chooses values lying between -63 and 64 and not between 0 and 127 .

Therefore after centre lifting the coefficients of matrix D_{1} to lie between -63 and 64 he gets D_{1} in table XII.

TABLE XII. DECRYPTED MATRIX D_{1} AFTER CENTER LIFTING

$$
\left|\begin{array}{ccccccccccccccc}
0 & -10 & 6 & -10 & -7 & -7 & 4 & -2 & 10 & 0 & 6 & 1 & 2 & -8 & 17 \\
9 & 12 & 7 & 14 & -1 & 8 & 3 & 11 & -9 & -5 & -5 & -7 & -5 & -2 & -5 \\
19 & 1 & 3 & 1 & 3 & 9 & 4 & 5 & 0 & 8 & 2 & -8 & -8 & 11 & -4 \\
4 & 1 & -15 & 8 & -2 & 7 & 2 & 2 & -2 & 11 & -3 & 5 & -6 & 6 & -4 \\
-11 & -2 & 3 & -3 & -10 & 2 & -9 & -1 & 3 & -1 & -15 & 3 & 2 & -6 & 3
\end{array}\right|
$$

$\left|\begin{array}{ccccccccccccccc}3 & 5 & -6 & -4 & -8 & 2 & 5 & -1 & 6 & -5 & 8 & 10 & 5 & -20 & 16 \\ -3 & -5 & -11 & -5 & -2 & -6 & 22 & 4 & -1 & 4 & -2 & 4 & 3 & -15 & 8 \\ -12 & 8 & -11 & 3 & 6 & 12 & 7 & -4 & -11 & 0 & 13 & 4 & 12 & -4 & 0 \\ -9 & 4 & -3 & 7 & -6 & -18 & 2 & -12 & 3 & -10 & 3 & 3 & 7 & -8 & -8 \\ 1 & 3 & 5 & 4 & -8 & -2 & -7 & 2 & 3 & 8 & -11 & -2 & -10 & 1 & -2 \\ 0 & -4 & 7 & -9 & -12 & 2 & -2 & -5 & 15 & -13 & 1 & 9 & 8 & -7 & 9 \\ -10 & 2 & 10 & 0 & 5 & -8 & -2 & -2 & 6 & 4 & 3 & -7 & 3 & -5 & -1 \\ -3 & -8 & -11 & -1 & -4 & -5 & -6 & -1 & 7 & 9 & 2 & -2 & -1 & 3 & 3 \\ -14 & 4 & -2 & 12 & -4 & -10 & 6 & -4 & -2 & -3 & 5 & 0 & 2 & -4 & -14 \\ 6 & 6 & 7 & 3 & 12 & 6 & 2 & 4 & 1 & 2 & -5 & 0 & -6 & 18 & -22\end{array}\right|$

Next Alice reduces the coefficients of D_{1} modulo $\mathrm{p}(\mathrm{p}=3$) and obtains $B_{1}=D_{1}(\bmod p)$, and Bob finally uses $f p$, the $2^{\text {nd }}$ part of his private key to compute $C_{1}=f p * B_{1}(\bmod p)$, which turns out to be C_{1} given in table XIII.

TABLE XIII. ORIGINAL MATRIX
$\left|\begin{array}{lllllllllllllll}0 & 2 & 2 & 0 & 1 & 1 & 1 & 0 & 0 & 2 & 0 & 1 & 0 & 1 & 2 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 2 & 1 & 1 & 1 & 0 & 0 & 2 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 2 & 1 & 0 & 1 & 2 & 2 \\ 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 2 & 1 & 1 & 0 & 2 & 2 & 0 \\ 1 & 1 & 0 & 0 & 2 & 1 & 0 & 2 & 0 & 2 & 1 & 1 & 0 & 2 & 1 \\ 1 & 1 & 0 & 2 & 1 & 0 & 1 & 0 & 1 & 2 & 1 & 1 & 0 & 2 & 1 \\ 1 & 0 & 2 & 0 & 2 & 1 & 0 & 2 & 0 & 0 & 1 & 1 & 0 & 2 & 2 \\ 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 2 & 0 & 0 & 1 & 0 & 1 & 2 \\ 1 & 1 & 0 & 2 & 1 & 1 & 0 & 2 & 0 & 2 & 1 & 1 & 0 & 0 & 2 \\ 1 & 0 & 2 & 0 & 1 & 1 & 0 & 2 & 2 & 0 & 1 & 1 & 0 & 0 & 2 \\ 1 & 0 & 2 & 1 & 1 & 0 & 1 & 0 & 1 & 2 & 1 & 0 & 1 & 2 & 1 \\ 0 & 1 & 0 & 1 & 2 & 1 & 1 & 0 & 2 & 1 & 1 & 0 & 2 & 0 & 2 \\ 1 & 0 & 2 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 2 & 0 \\ 1 & 0 & 2 & 0 & 2 & 0 & 1 & 0 & 1 & 2 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 2 & 0 & 2 & 1 & 1 & 0 & 2 & 1 & 1 & 1 & 0 & 2 & 1\end{array}\right|$

This is the initial 15X15 matrix M, which was the ternary representation of the ASCII values of the text characters to be encrypted. A next selects the first five elements of the 1st row of matrix C_{1} and finds its decimal equivalent (ASCII) value. Next he finds the alphabet or character corresponding to this ASCII value. Then he selects the next five elements of the 1st row (6 to 10) and repeats the same procedure to obtain the 2nd character. Lastly he selects the last 5 elements (11 to 15) of the 1st row to obtain the 3rd character.

He repeats this entire procedure for all the remaining rows of matrix C_{1} and decrypts all the characters and eventually obtains the original text message. Hence Alice successfully decrypts the $1^{\text {st }}$ encrypted sub text block which was encrypted using Alice's 1st public key h and sent by sender Bob in an encrypted form of random 15X15 matrix using his private key matrices pair f and f p.

Five bits of matrix B	ASCII Value	Corresponding character
01012	32	
10121	97	a
10122	98	b
10200	99	c
10201	100	d
10202	101	e
10210	102	f
10211	103	g
10220	105	i
11001	109	m
11002	110	n
11010	111	o
11011	112	p
11020	114	r
11021	115	S
11022	116	t
11100	117	u
11101	118	v
11102	119	W
11110	120	x
11111	121	Y
02201	73	I

Alice repeats this entire decryption procedure for all the other encrypted sub text blocks received from the sender (Bob) and eventually obtains the original message that was sent by the sender.

v. Analysis of Algorithm

In our paper we have proposed a method for encryption and decryption using matrices instead of polynomials as proposed in the original NTRU cryptosystem by Joffrey Hoffstein, Jill Piper and Joshep Silverman. It uses 10 different sets of public keys to encrypt different blocks of text messages in a random sequence. This method is more secure and efficient compared to the polynomial method as there is no way to determine whether a truncated polynomial in NTRU Cryptosystem is invertible or not. We can use this method because a matrix is invertible only when its determinant is found (which is relatively easier to find out). Also this method has a high degree of security as each block of text message is encrypted using different set of public keys instead of using just a single key which is highly vulnerable as the intruder might be able to figure out a single public key.

In our paper we used following parameter and corresponding execution time for existing method and proposed method as shown in table XV and XVI respectively.

TABLE XV. Estimated ExEcution time For existing algorithm

Degree of polynomial (N)	Estimated Execution time
$100(10 \mathrm{X} 10)$	7.2312 sec
$225(15 \mathrm{X} 15)$	4 hrs 22 min 21 sec 233 ms
$400(20 \mathrm{X} 20)$	7 days 6 hrs 46 min 44 sec 194 ms

TABLE XVI. Estimated Execution time for proposed algorithm

Degree of polynomial (N)	Estimated Execution time
$100(10 \mathrm{X} 10)$	5.0052 sec
$225(15 \mathrm{X} 15)$	5.7999 sec
$400(20 \mathrm{X} 20)$	6.9195

Advantages of the algorithm over existing standard method as proposed by Nayak et al.[2]

- This method is more secure than the proposed method by Nayak et al.[2] and also more efficient due to high degree of polynomials . Further, since for each block separate public keys are associated this can go 10 assigned randomly. Therefore it will increase the security to 10 fold than available in normal NTRU cryptosystem.
- In proposed method we do not required each and every time to generate private keys i.e. random matrices f and g. It saves huge computational time to generate these higher degree polynomials. The computational time for different higher degree polynomials (executed in MATLAB 7.8.0 (R2009a) on Hp Z600 workstation) are as follows.

TABLE XVII. COMPUTATIONAL TIME TO GENERATE RANDOM MATRICES

Degree of polynomial (N)	Estimated Execution time
$100(10 \mathrm{X} 10)$	2.8678 sec
$225(15 \mathrm{X} 15)$	4 hrs 22 min 18 sec
$400(20 \mathrm{X} 20)$	7 days 6 hrs 48 min 37 sec

vi. Conclusion

We have successfully performed the encryption and decryption operation for text message consisting of 450 characters by splitting it into 10 sub text blocks, each of size 45 characters and using 10 different set of private-public key pairs.

Figure 1. Average Eecution Time

We have compiled and run our code on MATLAB 7.8.0 (R2009a) and average execution time is to be 2.1234 sec .

Future scope of Work

In our proposed method, by using databank concept we can also perform encryption, decryption for the image and audio files more efficiently and securely.

References

[1] Whitefield Diffe, Martin E. Hellman "New Directions in cryptography "IEEE Information Theory, June 23-25, 1975 and IEEE International Symposium on Information theory, Sweden, June 21-24, 1976.
[2] Rakesh Nayak, C.V. Sastry and Jayaram Pradhan "A Matrix Formulation for NTRU cryptosystem" Proc. 16th IEEE International conference on Networks(ICON-2008), New Delhi, India 12-14 December, 2008.
[3] R.Nayak, C.V. Sastry and J. Pradhan, "Algorithmic Comparison between Polynomial Base and Matrix Base NTRU Cryptosystem", (IJCNS) International Journal of Computer and Network Security, vol.2, no.7, pp.58-63, July 2010.
[4] Jofferey Hoffstein, Jill Piper, Joshep H Silverman "NTRU A Ring based public key Cryptosystem" Lecture notes in Computer Science, Springer Verlag, Berlin 1433(1998),267-288.
[5] NTRU Cryptosystem, Technical Reports available at http:www.ntru.com
[6] C. Narsimham, Jayaram Pradhan "Performance analysis of Public key Cryptosystem RSA and NTRU" IJCSNS International Journal of Computer Science and Network Security, VOL. 7 No.8, August 2007,8796.
[7] Xu-Ren Luo and Chen-Hui Jerry Lin, "Discussion on Matrix NTRU", IJCSNS International Journal of Computer Science and Network
[8] Joffrey Hoffstein, Joshep H Silverman "Optimization for NTRU" Proceedings of conference on Public key Cryptography and Computational number theory, Warsaw, De Gruyter, 200(Sep 11-15) 77-88.

> Vinay Kumar was born in Siwan district of Bihar, India on 09/12/1983. He obtained his B.Tech degree in C.S.E in 2010 from Haldia Institute of Technology, West Bengal. His primary field of work includes NTRU Cryptosystem. He started his carrier from B.C.S., Bangalore as software developer. After wards he has worked in some other software company as Project Manager I.T. He is currently pursuing his M.Tech in C.S.E. from N.I.T Durgapur.

Mohan Rao Mamidkar was born in Bijapur district, Chhattisgarh, India on 09/02/1982. He obtained his B.Tech degree in C.S.E. in 2006 from N.I.T. Raipur. He is currently pursuing his M.Tech in C.S.E. from N.I.T Durgapur. His primary field of work includes NTRU Cryptosystem. Prior to M. Tech., He started his carrier from LIET, Hyderabad as Assistant professor after wards he has worked in LCIT Bilaspur Engineering College as Lecturer in C.S.E. department. He has 4 yrs experience in the field of teaching.

