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Abstract—As the use and density of memories in electronic 

circuits is growing more and more, testing of memories and 
diagnosing various faults present in them are becoming more and 
more prominent now-a-days. In this paper, two new types of 
hardware BISD circuits are designed for bit oriented memories. 
The proposed BISD circuits can not only detect the coupling faults 
but also locate the address of the victim cell as well as that of the 
aggressor cell in the presence of a coupling fault.  Above all this 
circuit is very simple, easy to design and is expected to reduce the 
testing time compared to the software based testing methodologies.  
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I.  Introduction 
In recent years, memories have become the most universal 

component. Most of the electronic circuits contain embedded 
memory. As the VLSI technology moving into deep 
submicron level, the density of memory is growing day by 
day. Due to this dense integration, various types of faults are 
encountered in memories which in fact decrease the 
performance of the whole circuit. So testing of semiconductor 
memories and detecting various types of faults present in them 
is going to be of utmost importance. [1-4]Built-in self-test has 
been proven to be one of the most cost-effective and widely 
used solutions for memory testing, as it does not require 
external test equipment, consumes very less time and 
generates on-chip test pattern to provide higher controllability 
and observability.  The memory testing algorithm plays a very 
important role in the diagnosis of memory. The algorithms 
implemented to test memories can also be classified into two 
types: Classical tests and March based tests. Some classical 
tests like Zero-One and Checkerboard are simple and fast but 
having poor fault coverage whereas tests like Walking zero-
one and GALPAT have a better fault coverage but with a large 
testing time[5-7]. As compared to these tests, March based 
tests are simple having higher fault coverage for which they 
are being used widely in most modern memory BIST [8]. 

[9] Discusses a set of March tests together with methods to 
make composite tests for collections of fault types.  In [10] 
With 17N Read/write operations, the algorithm for bit-oriented 
memories can distinguish between stuck-at fault, state 
coupling fault, idempotent coupling fault, and inversion 
coupling fault. 
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Moreover, the aggressor cell in case of a CF can be located by 
applying an additional March-like algorithm with 3N 
complexity.  In addition to testing the embedded memories 
using mach algorithm [9] and [10], diagnosis of fault sites and 
repair by the redundant bit-lines to increase the yield is 
necessary for large cores. Therefore, in [11], [12] built in self 
diagnosis (BISD), built-in-self repair (BISR) and built in self 
redundancy analysis (BIRA) technologies are becoming 
inevitable, so far as overall test cost is concerned. 

In this paper, we have introduced two new schemes of 
hardware BISD circuits for embedded memories. The 
proposed BISD circuits are capable of detecting faults as well 
as the locations of aggressor and victim cells in case of any 
coupling fault. Here, the 1st BISD hardware approach is used 
to locate the address of victim cell for coupling fault. Upon 
receiving the address of victim cell, the second BISD circuit, 
based on 3N algorithm [10], can locate the aggressor cell. The 
discussed circuits in this paper are structurally very simple and 
easy to design. Moreover, these circuits reduce test time and 
test cost and thereby improving the yield of memory. 

The paper is organized as follows. Section 2 defines fault 
models and notations. In section 3, the 17N diagnosis 
algorithm for bit oriented memories and algorithm for locating 
the coupling faults are described. Section 4 introduces the 
BISD hardware circuits for locating the victim and aggressor 
cell. Finally section 5 concludes the paper.  

II. Fault Models 
A fault model is an engineering model of something that 

could go wrong in the construction or operation of a piece of 
equipment. From the model, the designer or user can then 
predict the consequences of this particular fault. Fault models 
can be used in almost all branches of engineering. As the cell 
array dominates the silicon area of the memories, the faults 
within the cell array are considered. The fault models that are 
prominently found in semiconductor memories are considered 
here. 

A. Stuck-At Fault 
A stuck-at fault is a particular type of fault where the logic 

value of a line or cell sticks to one particular value (either 0 or 
1).This usually happens when a cell or line gets shorted to 
either supply(1) or ground(0). Stuck-at fault can be of two 
types depending on the value the faulty cell or line 
permanently holds. If the cell gets shorted with the supply, it is 
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called stuck-at-1 fault (S-A-1) and if it is shorted to ground 
then it is called stuck-at-0 fault (S-A-0). 

B. Transition Fault 
Transition fault (TF) can be viewed as a special type of 

SAF. This is the case when a cell fails to undergo a transition 
from one particular logical value to another, i.e. either 1 to 0 
or 0 to 1. If a cell fails to undergo up transition (0→1), then 

the fault is called up transition fault denoted as <↑/0> and if a 
cell fails to undergo down transition (1→0), then the fault is 

called down transition fault which is denoted as <↑/1>. 

C. Coupling Fault 
 It involves two cells, A-cell (Aggressor cell) and V-cell 

(Victim cell). If any operation performed to the A-cell forces 
or changes the state of the V-cell, this is said to be coupling 
fault. A-cell is coupling cell and V-cell is coupled. Coupling 
faults (CF) can be of three types.  

CF(Ap,As,Vs) represents the Coupling fault for bit-
oriented memory, where Ap € {H,L} represents the relative 
position (higher or lower) of the aggressor with respect to the 
victim, As €{0,1, ↑,↓} represents the state of the aggressor cell   
that activates the fault, and Vs € {0,1, ↕} is the faulty state of 
the victim cell. The symbol ↕   stands for either ↑ or ↓. For 
example,  CFin(H,↓, ↕) represents an inversion coupling fault 
where the possible aggressor is located at a higher address 
than the victim, and when the aggressor undergoes a down 
transition, the victim is forced to invert its value. 

1) Inversion CF: A transition (↑ or ↓) write operation to 
the A-cell toggles or inverts the contents of V-cell. 0 to 1 (or 1 
to 0) transition in one cell inverts the content of a second cell. 
A CFin can be thought of as a D flip-flop with an extra clock 
input and the Q’ output tied to the D input as in Fig. 1(b). 

2) Idempotent CF: A CF whereby the transition write 
operation (0 to 1 or 1 to 0 ) applied to the A-cell forces the 
state of the V-cell to a certain value ‘0‘ or ‘1‘. An idempotent 
coupling fault can be thought of as an S/R-type flip-flop with 
an OR-gate in the Set or Reset line as shown in Fig. 1(a). 

3) State CF: A CF whereby the state of A-cell forces 
the state of V-cell to a fixed value is said to be State coupling 
Fault. The CFst is of four subtypes: <1;0>, <1;1>, <0;0> and 
<0;1>. It can be thought of as a D-type flip-flop with an 
OR/AND-gate in the data line (D). 

D. Neighborhood Pattern Sensitive 
Fault 

NPSF can be defined as a fault model which is 
somewhat similar to coupling faults but in this case the no. of 
aggressor cells is more than one. 
 

1) Active NPSF: The base cell changes its contents due 
to changes in the neighborhood pattern. A test that has to 
detect and locate ANPSFs should satisfy the following  

TABLE I.   FAULTS COVERED BY 17-N ALGORITHM 

requirement: each base cell must be read in state 0 and in 
state1 for all possible transitions in the deleted neighborhood 
pattern. There are two different possible values for the base 
cell (0 and 1), k-1 ways of choosing the deleted neighborhood 
cell which must undergo one of two possible transitions (↑ or 
↓), and 2k-2 possibilities for the remaining neighborhood cell 
contents. The total number of active neighborhood patterns 
(ANPs) is 2* (k-1)*2*2k-2 = (k-1)*2k. 

2) Passive NPSF: The contents of the base cell cannot 
be changed due to a certain neighborhood pattern. The 
necessary condition to detect and locate PNPSF: for each of 
the2k-1 deleted neighborhood patterns, the two possible 
transitions up and down of base cell must be verified. 
Therefore, the total number of PNPSFs is 2*2k-1 = k*2k. The 
total pattern count for active and passive neighborhood pattern 
sensitive fault APNPSFs is therefore, (k-1)*2k + 2k =k*2k. 
 

3) Static NPSF: The contents of a base cell is forced to 
a certain or particular state due to a certain neighborhood 
pattern. The necessary condition to detect and locate SNPSF is 
that we must apply the 2k combinations of 0s and 1s to the k-
cell neighborhood, and verify by reading each cell that each 
pattern can be stored or not. It differs from Active and Passive 
NPSF such that it need not have a transition to sensitize the 
SNPSF. 
 

The faults that are covered under the algorithm discussed 
in this paper are given in Table-I. 

III. March Algorithms 
March tests are widely used to test and diagnose the 

semiconductor memories if any fault found in it. The linear 
complexity of these March tests computes with respect to the 
number of memory cells which are to be tested. While 
comparing them with the traditional testing methods, March 
tests are found to be less time consuming as well as covering 
more faults effectively. 

 

Stuck At 
Faults 

Coupling Faults 

SAF Static 
Coupling 

Fault(CFst) 

Idempotent 
Coupling 

Fault(CFid) 

Inversion 
Coupling 

Fault(CFin) 
SAF(0) CFst(L,0,0) CFid(L,↑,1) CFin(L,↑,↕) 
SAF(1) CFst(H,0,0) CFid(L,↑,0) CFin(L,↓,↕) 

 CFst(L,0,1) CFid(L,↓,1) CFin(H,↑,↕) 
 CFst(H,0,1) CFid(L,↓,0) CFin(H,↓,↕) 
 CFst(L,1,0) CFid(H,↑,1)  
 CFst(H,1,0) CFid(H,↑,0)  
 CFst(L,1,1) CFid(H,↓,1)  
 CFst(H,1,1) CFid(H,↓,0)  
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A March test usually consists of a number of March 

elements represented as Ms where‗s‘ specifies the March 
sequence number [9]. Each March element consist a certain 
number of Read and/or Write operations to all cells according 
to a predefined address order which may be ascending (⇑), 
descending (⇓), or either (⇕). March algorithm is designed to 
detect the fault in semiconductor memories. But the same 
March algorithm cannot be used for diagnosis. Diagnosis in 
this context means finding the fault type with the help of 
syndrome and then locating the faulty cells. After applying 
any March test, the generated syndromes are then compared to 
the fault dictionary and the type of fault can then easily be 
determined. Our current interest is to design hardware for 
locating the faulty cells to cover all the coupling faults. 

A. Algorithm for Syndrome Generation 
of Coupling Faults 

In this paper we have considered March-17N test due its 
coverage of all Stuck-at as well as coupling faults [10]. The 
March-17N RAM diagnosis algorithm is given below. Also 
among all the March algorithms, March 17N diagnosis 
algorithm has the lowest time complexity. 

{ ⇕(w0); ⇑(r0,w1,r1); ⇕(r1); ⇑(r1,w0,r0);⇕(r0); ⇓(r0,w1,r1); 
⇕(r1); ⇓(r1,w0,r0); ⇕(r0)} 

For a given test algorithm, the corresponding dictionary of 
fault syndromes is constructed each row of which corresponds 
to a certain fault class. From the Table I, CFst(L,0,1) means  
that state coupling fault, when the value of aggressor  cell is 0, 
with the address lower than the victim cell (indicated by an L), 
then the victim cell is forced to 1; CFin(H,↑,↕) means 
inversion coupling fault, i.e. if there is a transition arising in 
the aggressor cell with the address higher than the victim cell 
(indicated by an H), the content of the victim cell will be 
inverted; and so on. Fig.2 describes the fault free content of a 
4-bit memory. The read values of second March element from 
each cell give the logic 0, since previous (i.e. first March 
element) March operation has written logic 0. Fig. 3 describes 
that if the second cell (i.e. address 01) gives the value 1 that 
indicates that cell is faulty and called Victim cell. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

B. Algorithm for locating the aggressor 
cell of coupling faults 

March-like algorithm for locating the aggressor cell was 
reported in [10]. Assume that the position (address) of the 
victim of a CF is represented by v and V denotes the fault-free 
state of the victim. [10]The algorithm for locating the 
aggressor is shown as follows:  

{⇑ (wĀ); wv V; ⇑(wA ,rv V)}  

 Or 

{⇓ (wĀ); wv V; ⇓(wA ,rv V)}                     

The symbols ⇑ means that the operations are performed 
from 0 to (v – 1) and ⇓ means the operations performed from 
(N – 1) to (v + 1). wv and rv, represent the Write and Read 
operations that are performed only to victim cell address v. 
Also, the value A is determined by the state of the aggressor of 
the CF after the above diagnosis test. For example, if we want 
to locate the aggressor of a CFid (L,↑,0), then we have to take 
A=l. 

The worst case complexity of above algorithm is 3N since 
the position of victim cell is 0 or N - 1. Depending on whether 
the possible aggressor cell is located lower or higher than the 
victim cell, one may select only the first or second part of the 
algorithm. E.g., to locate the aggressor of CFin (L,↑,↕), the 1st 
March algorithm is selected. For example, CFid (L,↑,0)   has 
been diagnosed by the March-17N algorithm and the faulty 
cell is the second bit in an 8-bit memory array. Here A=1 is 
selected, so algorithm given below is applied. 

{⇑ (w0); w1 1; ⇑ (w1, r1 1)} 

The first two Write operations are used to initialize the 
memory. The last March element writes 1 from 7th down to 
the 3rd bit and at same time reads 1 (expected) in the 2nd bit. 
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IV. BIST implementation  

In this section, first we have described our hardware 
approach to locate the victim cell of a coupling fault. Next, the 
3N algorithm I used to design the hardware scheme to locate 
the aggressor cell, depending on the victim cell. In this case 
we have considered the location of aggressor cell is lower than 
the victim cell.  

A. Circuit to locate the Victim cell 

The fig. 3 shows the hardware implementation of BIST to 
locate the address of victim cell. Here the test controller is 
used to controls the application of the different (March) test 
phases, the address generation by, e.g., a linear-feedback shift 
register (LFSR), and application of the data and control signals 
such as R/W.  

A comparator is used to compare the read and write bit. If 
no error has been found then the output will be 0, otherwise it 
will be 1. This output is fed to a demultiplexer as select line as 
well as to the two m-bit latches as enable line where m is the 
number of address lines of memory. For 1st latch, error line is 
fed directly whereas the 2nd latch is fed by inverting it. 
Demultiplexer input is coming from address generating LFSR. 

During test application, when memory faults are detected, 
the comparator output goes to 1 and the demultiplexer passes 
the faulty address through O1 (victim cell address). If there is 
no error present comparator output will be 0 and demultiplexer 
will pass the input (fault free address) through the O0. We can 
get the same address at the output of the 2nd latch. 

B. Circuit to locate the Aggressor cell 

In this paper, a special type of circuit is proposed which 
can identify the location of the aggressor cell in the presence 
of a coupling fault. The circuit in Fig.4 can get the address of 
the victim cell and the type of coupling fault present in it. 
Using this information, circuit presented in fig.5 can easily 
find out the location of the aggressor cell. 

 

 

 

 

 

 

 

In this circuit, we have placed a special controlling circuit 
inside the test controller named as ‗March Operation 
Controller‘ which is used to control the March operation. 
From Table-2, we get the output expression for March 
operation controller. In this table, X and Y represent March 
element number whereas Z represents operation r/w for each 
March element. E.g. the test algorithm in [10] to locate the 
address of aggressor cell is 

{⇑ (wĀ); wv V; ⇑(wA ,rv V)}  

 Or 

{⇓ (wĀ); wv V; ⇓(wA ,rv V)}                     

Suppose we have taken the address of aggressor cell lower 
than that of the address of the victim cell. Therefore we will 
consider the 1st algorithm. In that algorithm, the 1st March 
element (m0 i.e. xy=00) is ⇑(wĀ), 2nd March element (m1 i.e. 
xy=01) is wvV and the 3rd March element (m2 i.e xy=10) is  
⇑(wA ,rv V). Operation number for wA is 0 and for rvV is 1 
[Table I]. For each March element, z=0 represents write 
operation and z=1 represents read operation [table III]. Table 
IV explains the March operation controller value. 

We have considered the address of aggressor cell to be 
lower than the victim cell. The victim cell address is stored in 
a buffer with the help of the circuit in Fig. 4. There is an 
address generator which generates address from 0 to v-1. The 
AV controller controls the address of the victim as well as the 
aggressor cell through an MOC signal, during the cycle of 
March sequence. This signal comes from the output of the 
March element counter present inside Test controller. When 
the MOC signal is 0, it passes the addresses from 0 to v-1 i.e. 
aggressor cell address and when the signal is 1, it passes the 
victim cell address to memory. Test controller is used to 
control the application of different (March) test phases, MOC 
signal, and application of data and controls the signals such as 
r/w. 

During the test application, output data is available for the 
3rd March element in the algorithm for read operation which is 
fed to the comparator as one input with the 2nd input being the 
true value of the victim cell. If the comparator output becomes 
1 then the address of aggressor cell is latched. 
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Conclusion 

In this paper two hardware based BISD designs are 
proposed for Bit-oriented memory. The main purpose of this 
approach is to find the location of the victim cell and 
aggressor cell of the coupling fault in the memory. As a result, 
we are able to locate a large number of coupling faults at a 
lower time complexity. Hence, the yield of the memory is 
improved.     
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TABLE II.     MARCH ELEMENT 
 

 
X                Y 

 
Element 

0                 0 M0 

0                  1 M1 

1                  0 M2 

 

TABLE III.  MARCH OPERATION 
 

Z Operation 

0 Write 

1 read 

 

TABLE IV.       March Element Controller 
 

X    Y    Z F = march operation 
controller value 

0     0     0 0 

0     1     0 1 

1     0     0 0 

1     0     1 1 
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