

209

An efficient BISD Scheme for Diagnosis of Coupling
Faults

[Kirtisova Behera Manojit Panda Deepak Agarwal]

Abstract—As the use and density of memories in electronic

circuits is growing more and more, testing of memories and
diagnosing various faults present in them are becoming more and
more prominent now-a-days. In this paper, two new types of
hardware BISD circuits are designed for bit oriented memories.
The proposed BISD circuits can not only detect the coupling faults
but also locate the address of the victim cell as well as that of the
aggressor cell in the presence of a coupling fault. Above all this
circuit is very simple, easy to design and is expected to reduce the
testing time compared to the software based testing methodologies.

Keywords—Memory, fault model, March Test, BISD

I. Introduction
In recent years, memories have become the most universal

component. Most of the electronic circuits contain embedded
memory. As the VLSI technology moving into deep
submicron level, the density of memory is growing day by
day. Due to this dense integration, various types of faults are
encountered in memories which in fact decrease the
performance of the whole circuit. So testing of semiconductor
memories and detecting various types of faults present in them
is going to be of utmost importance. [1-4]Built-in self-test has
been proven to be one of the most cost-effective and widely
used solutions for memory testing, as it does not require
external test equipment, consumes very less time and
generates on-chip test pattern to provide higher controllability
and observability. The memory testing algorithm plays a very
important role in the diagnosis of memory. The algorithms
implemented to test memories can also be classified into two
types: Classical tests and March based tests. Some classical
tests like Zero-One and Checkerboard are simple and fast but
having poor fault coverage whereas tests like Walking zero-
one and GALPAT have a better fault coverage but with a large
testing time[5-7]. As compared to these tests, March based
tests are simple having higher fault coverage for which they
are being used widely in most modern memory BIST [8].

[9] Discusses a set of March tests together with methods to
make composite tests for collections of fault types. In [10]
With 17N Read/write operations, the algorithm for bit-oriented
memories can distinguish between stuck-at fault, state
coupling fault, idempotent coupling fault, and inversion
coupling fault.

Kirtisova Behera, Manojit Panda, Deepak Agarwal
National Institute of Technology, Durgapur
India

Moreover, the aggressor cell in case of a CF can be located by
applying an additional March-like algorithm with 3N
complexity. In addition to testing the embedded memories
using mach algorithm [9] and [10], diagnosis of fault sites and
repair by the redundant bit-lines to increase the yield is
necessary for large cores. Therefore, in [11], [12] built in self
diagnosis (BISD), built-in-self repair (BISR) and built in self
redundancy analysis (BIRA) technologies are becoming
inevitable, so far as overall test cost is concerned.

In this paper, we have introduced two new schemes of
hardware BISD circuits for embedded memories. The
proposed BISD circuits are capable of detecting faults as well
as the locations of aggressor and victim cells in case of any
coupling fault. Here, the 1st BISD hardware approach is used
to locate the address of victim cell for coupling fault. Upon
receiving the address of victim cell, the second BISD circuit,
based on 3N algorithm [10], can locate the aggressor cell. The
discussed circuits in this paper are structurally very simple and
easy to design. Moreover, these circuits reduce test time and
test cost and thereby improving the yield of memory.

The paper is organized as follows. Section 2 defines fault
models and notations. In section 3, the 17N diagnosis
algorithm for bit oriented memories and algorithm for locating
the coupling faults are described. Section 4 introduces the
BISD hardware circuits for locating the victim and aggressor
cell. Finally section 5 concludes the paper.

II. Fault Models
A fault model is an engineering model of something that

could go wrong in the construction or operation of a piece of
equipment. From the model, the designer or user can then
predict the consequences of this particular fault. Fault models
can be used in almost all branches of engineering. As the cell
array dominates the silicon area of the memories, the faults
within the cell array are considered. The fault models that are
prominently found in semiconductor memories are considered
here.

A. Stuck-At Fault
A stuck-at fault is a particular type of fault where the logic

value of a line or cell sticks to one particular value (either 0 or
1).This usually happens when a cell or line gets shorted to
either supply(1) or ground(0). Stuck-at fault can be of two
types depending on the value the faulty cell or line
permanently holds. If the cell gets shorted with the supply, it is

Proc. of the Second Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering -- CEEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6260-5 doi:10.3850/ 978-981-07-6260-5_43

210

called stuck-at-1 fault (S-A-1) and if it is shorted to ground
then it is called stuck-at-0 fault (S-A-0).

B. Transition Fault
Transition fault (TF) can be viewed as a special type of

SAF. This is the case when a cell fails to undergo a transition
from one particular logical value to another, i.e. either 1 to 0
or 0 to 1. If a cell fails to undergo up transition (0→1), then

the fault is called up transition fault denoted as <↑/0> and if a
cell fails to undergo down transition (1→0), then the fault is

called down transition fault which is denoted as <↑/1>.

C. Coupling Fault
 It involves two cells, A-cell (Aggressor cell) and V-cell

(Victim cell). If any operation performed to the A-cell forces
or changes the state of the V-cell, this is said to be coupling
fault. A-cell is coupling cell and V-cell is coupled. Coupling
faults (CF) can be of three types.

CF(Ap,As,Vs) represents the Coupling fault for bit-
oriented memory, where Ap € {H,L} represents the relative
position (higher or lower) of the aggressor with respect to the
victim, As €{0,1, ↑,↓} represents the state of the aggressor cell
that activates the fault, and Vs € {0,1, ↕} is the faulty state of
the victim cell. The symbol ↕ stands for either ↑ or ↓. For
example, CFin(H,↓, ↕) represents an inversion coupling fault
where the possible aggressor is located at a higher address
than the victim, and when the aggressor undergoes a down
transition, the victim is forced to invert its value.

1) Inversion CF: A transition (↑ or ↓) write operation to
the A-cell toggles or inverts the contents of V-cell. 0 to 1 (or 1
to 0) transition in one cell inverts the content of a second cell.
A CFin can be thought of as a D flip-flop with an extra clock
input and the Q’ output tied to the D input as in Fig. 1(b).

2) Idempotent CF: A CF whereby the transition write
operation (0 to 1 or 1 to 0) applied to the A-cell forces the
state of the V-cell to a certain value ‘0‘ or ‘1‘. An idempotent
coupling fault can be thought of as an S/R-type flip-flop with
an OR-gate in the Set or Reset line as shown in Fig. 1(a).

3) State CF: A CF whereby the state of A-cell forces
the state of V-cell to a fixed value is said to be State coupling
Fault. The CFst is of four subtypes: <1;0>, <1;1>, <0;0> and
<0;1>. It can be thought of as a D-type flip-flop with an
OR/AND-gate in the data line (D).

D. Neighborhood Pattern Sensitive
Fault

NPSF can be defined as a fault model which is
somewhat similar to coupling faults but in this case the no. of
aggressor cells is more than one.

1) Active NPSF: The base cell changes its contents due
to changes in the neighborhood pattern. A test that has to
detect and locate ANPSFs should satisfy the following

TABLE I. FAULTS COVERED BY 17-N ALGORITHM

requirement: each base cell must be read in state 0 and in
state1 for all possible transitions in the deleted neighborhood
pattern. There are two different possible values for the base
cell (0 and 1), k-1 ways of choosing the deleted neighborhood
cell which must undergo one of two possible transitions (↑ or
↓), and 2k-2 possibilities for the remaining neighborhood cell
contents. The total number of active neighborhood patterns
(ANPs) is 2* (k-1)*2*2k-2 = (k-1)*2k.

2) Passive NPSF: The contents of the base cell cannot
be changed due to a certain neighborhood pattern. The
necessary condition to detect and locate PNPSF: for each of
the2k-1 deleted neighborhood patterns, the two possible
transitions up and down of base cell must be verified.
Therefore, the total number of PNPSFs is 2*2k-1 = k*2k. The
total pattern count for active and passive neighborhood pattern
sensitive fault APNPSFs is therefore, (k-1)*2k + 2k =k*2k.

3) Static NPSF: The contents of a base cell is forced to
a certain or particular state due to a certain neighborhood
pattern. The necessary condition to detect and locate SNPSF is
that we must apply the 2k combinations of 0s and 1s to the k-
cell neighborhood, and verify by reading each cell that each
pattern can be stored or not. It differs from Active and Passive
NPSF such that it need not have a transition to sensitize the
SNPSF.

The faults that are covered under the algorithm discussed
in this paper are given in Table-I.

III. March Algorithms
March tests are widely used to test and diagnose the

semiconductor memories if any fault found in it. The linear
complexity of these March tests computes with respect to the
number of memory cells which are to be tested. While
comparing them with the traditional testing methods, March
tests are found to be less time consuming as well as covering
more faults effectively.

Stuck At
Faults

Coupling Faults

SAF Static
Coupling

Fault(CFst)

Idempotent
Coupling

Fault(CFid)

Inversion
Coupling

Fault(CFin)
SAF(0) CFst(L,0,0) CFid(L,↑,1) CFin(L,↑,↕)
SAF(1) CFst(H,0,0) CFid(L,↑,0) CFin(L,↓,↕)

 CFst(L,0,1) CFid(L,↓,1) CFin(H,↑,↕)
 CFst(H,0,1) CFid(L,↓,0) CFin(H,↓,↕)
 CFst(L,1,0) CFid(H,↑,1)
 CFst(H,1,0) CFid(H,↑,0)
 CFst(L,1,1) CFid(H,↓,1)
 CFst(H,1,1) CFid(H,↓,0)

Proc. of the Second Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering -- CEEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6260-5 doi:10.3850/ 978-981-07-6260-5_43

211

A March test usually consists of a number of March

elements represented as Ms where‗s‘ specifies the March
sequence number [9]. Each March element consist a certain
number of Read and/or Write operations to all cells according
to a predefined address order which may be ascending (⇑),
descending (⇓), or either (⇕). March algorithm is designed to
detect the fault in semiconductor memories. But the same
March algorithm cannot be used for diagnosis. Diagnosis in
this context means finding the fault type with the help of
syndrome and then locating the faulty cells. After applying
any March test, the generated syndromes are then compared to
the fault dictionary and the type of fault can then easily be
determined. Our current interest is to design hardware for
locating the faulty cells to cover all the coupling faults.

A. Algorithm for Syndrome Generation
of Coupling Faults

In this paper we have considered March-17N test due its
coverage of all Stuck-at as well as coupling faults [10]. The
March-17N RAM diagnosis algorithm is given below. Also
among all the March algorithms, March 17N diagnosis
algorithm has the lowest time complexity.

{ ⇕(w0); ⇑(r0,w1,r1); ⇕(r1); ⇑(r1,w0,r0);⇕(r0); ⇓(r0,w1,r1);
⇕(r1); ⇓(r1,w0,r0); ⇕(r0)}

For a given test algorithm, the corresponding dictionary of
fault syndromes is constructed each row of which corresponds
to a certain fault class. From the Table I, CFst(L,0,1) means
that state coupling fault, when the value of aggressor cell is 0,
with the address lower than the victim cell (indicated by an L),
then the victim cell is forced to 1; CFin(H,↑,↕) means
inversion coupling fault, i.e. if there is a transition arising in
the aggressor cell with the address higher than the victim cell
(indicated by an H), the content of the victim cell will be
inverted; and so on. Fig.2 describes the fault free content of a
4-bit memory. The read values of second March element from
each cell give the logic 0, since previous (i.e. first March
element) March operation has written logic 0. Fig. 3 describes
that if the second cell (i.e. address 01) gives the value 1 that
indicates that cell is faulty and called Victim cell.

B. Algorithm for locating the aggressor
cell of coupling faults

March-like algorithm for locating the aggressor cell was
reported in [10]. Assume that the position (address) of the
victim of a CF is represented by v and V denotes the fault-free
state of the victim. [10]The algorithm for locating the
aggressor is shown as follows:

{⇑ (wĀ); wv V; ⇑(wA ,rv V)}

 Or

{⇓ (wĀ); wv V; ⇓(wA ,rv V)}

The symbols ⇑ means that the operations are performed
from 0 to (v – 1) and ⇓ means the operations performed from
(N – 1) to (v + 1). wv and rv, represent the Write and Read
operations that are performed only to victim cell address v.
Also, the value A is determined by the state of the aggressor of
the CF after the above diagnosis test. For example, if we want
to locate the aggressor of a CFid (L,↑,0), then we have to take
A=l.

The worst case complexity of above algorithm is 3N since
the position of victim cell is 0 or N - 1. Depending on whether
the possible aggressor cell is located lower or higher than the
victim cell, one may select only the first or second part of the
algorithm. E.g., to locate the aggressor of CFin (L,↑,↕), the 1st
March algorithm is selected. For example, CFid (L,↑,0) has
been diagnosed by the March-17N algorithm and the faulty
cell is the second bit in an 8-bit memory array. Here A=1 is
selected, so algorithm given below is applied.

{⇑ (w0); w1 1; ⇑ (w1, r1 1)}

The first two Write operations are used to initialize the
memory. The last March element writes 1 from 7th down to
the 3rd bit and at same time reads 1 (expected) in the 2nd bit.

Proc. of the Second Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering -- CEEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6260-5 doi:10.3850/ 978-981-07-6260-5_43

212

IV. BIST implementation

In this section, first we have described our hardware
approach to locate the victim cell of a coupling fault. Next, the
3N algorithm I used to design the hardware scheme to locate
the aggressor cell, depending on the victim cell. In this case
we have considered the location of aggressor cell is lower than
the victim cell.

A. Circuit to locate the Victim cell

The fig. 3 shows the hardware implementation of BIST to
locate the address of victim cell. Here the test controller is
used to controls the application of the different (March) test
phases, the address generation by, e.g., a linear-feedback shift
register (LFSR), and application of the data and control signals
such as R/W.

A comparator is used to compare the read and write bit. If
no error has been found then the output will be 0, otherwise it
will be 1. This output is fed to a demultiplexer as select line as
well as to the two m-bit latches as enable line where m is the
number of address lines of memory. For 1st latch, error line is
fed directly whereas the 2nd latch is fed by inverting it.
Demultiplexer input is coming from address generating LFSR.

During test application, when memory faults are detected,
the comparator output goes to 1 and the demultiplexer passes
the faulty address through O1 (victim cell address). If there is
no error present comparator output will be 0 and demultiplexer
will pass the input (fault free address) through the O0. We can
get the same address at the output of the 2nd latch.

B. Circuit to locate the Aggressor cell

In this paper, a special type of circuit is proposed which
can identify the location of the aggressor cell in the presence
of a coupling fault. The circuit in Fig.4 can get the address of
the victim cell and the type of coupling fault present in it.
Using this information, circuit presented in fig.5 can easily
find out the location of the aggressor cell.

In this circuit, we have placed a special controlling circuit
inside the test controller named as ‗March Operation
Controller‘ which is used to control the March operation.
From Table-2, we get the output expression for March
operation controller. In this table, X and Y represent March
element number whereas Z represents operation r/w for each
March element. E.g. the test algorithm in [10] to locate the
address of aggressor cell is

{⇑ (wĀ); wv V; ⇑(wA ,rv V)}

 Or

{⇓ (wĀ); wv V; ⇓(wA ,rv V)}

Suppose we have taken the address of aggressor cell lower
than that of the address of the victim cell. Therefore we will
consider the 1st algorithm. In that algorithm, the 1st March
element (m0 i.e. xy=00) is ⇑(wĀ), 2nd March element (m1 i.e.
xy=01) is wvV and the 3rd March element (m2 i.e xy=10) is
⇑(wA ,rv V). Operation number for wA is 0 and for rvV is 1
[Table I]. For each March element, z=0 represents write
operation and z=1 represents read operation [table III]. Table
IV explains the March operation controller value.

We have considered the address of aggressor cell to be
lower than the victim cell. The victim cell address is stored in
a buffer with the help of the circuit in Fig. 4. There is an
address generator which generates address from 0 to v-1. The
AV controller controls the address of the victim as well as the
aggressor cell through an MOC signal, during the cycle of
March sequence. This signal comes from the output of the
March element counter present inside Test controller. When
the MOC signal is 0, it passes the addresses from 0 to v-1 i.e.
aggressor cell address and when the signal is 1, it passes the
victim cell address to memory. Test controller is used to
control the application of different (March) test phases, MOC
signal, and application of data and controls the signals such as
r/w.

During the test application, output data is available for the
3rd March element in the algorithm for read operation which is
fed to the comparator as one input with the 2nd input being the
true value of the victim cell. If the comparator output becomes
1 then the address of aggressor cell is latched.

Proc. of the Second Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering -- CEEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6260-5 doi:10.3850/ 978-981-07-6260-5_43

213

Conclusion

In this paper two hardware based BISD designs are
proposed for Bit-oriented memory. The main purpose of this
approach is to find the location of the victim cell and
aggressor cell of the coupling fault in the memory. As a result,
we are able to locate a large number of coupling faults at a
lower time complexity. Hence, the yield of the memory is
improved.

Acknowledgment
We would like to convey our utmost respect and hearty

thanks to our project guide Ms. Mousumi Saha, Asst. Prof,
Dept. of Computer Applications, NIT Durgapur for giving her
invaluable time from her busy schedule, sharing her
knowledge at each and every step and guiding us throughout
our work on this project.

References
[1] B. E Cockburn, ―Tutorial on semiconductor memory testing‖,J.

Electronic Testing: Theory and Application, vol. 5,pp. 321-336, 1994.

[2] P. Camurati, P. Prinetto, M. S. Reorda, S. Barbagallo,A. Burri, and D.
Medina, ―Industrial BIST of embedded RAMs‖, IEEE Design & Test of
Computers, vol. 12, no. 3,pp. 86-95, Fall 1995.

[3] C.-W. Wu, ―Testing embedded memories: Is BIST the ultimate
solution?‖, in Proc. Seventh IEEE Asian Test Svmp.(ATS), Singapore,
Dec. 1998, pp. 516-517.

[4] C.-T. Huang, J.-R. Huang, C.-E Wu, C.-W. Wu, and T.-Y. Chang, ―A
programmable BIST core for embedded DRAM‖,IEEE Design & Test of
Computers, vol. 16, no. I , pp. 59-70,Jan.-Mar. 1999.

[5] Breuer .A;Friedman A.d Diagnosis and reliable design of digital
systems.Computer science Press,Woodland Hills,california 1976.

[6] Knaizuk J;Hartman C.An optimalalgorithm for tesing stuck- at faults in
random access memories.IEEE TC. Vol. C-26,pp.11411144,1977.

[7] A.J van de Goor A.J Testing semiconductor memories theory and
practice.John wiley & sons,Chihester,UK,1991.

TABLE II. MARCH ELEMENT

X Y

Element

0 0 M0

0 1 M1

1 0 M2

TABLE III. MARCH OPERATION

Z Operation

0 Write

1 read

TABLE IV. March Element Controller

X Y Z F = march operation
controller value

0 0 0 0

0 1 0 1

1 0 0 0

1 0 1 1

Proc. of the Second Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering -- CEEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6260-5 doi:10.3850/ 978-981-07-6260-5_43

214

[8] Allen C.cheng , ―COMPREHENSIVE STUDY ON DESIGNING
MEMORY BIST :ALGORITHM,IMPLEMENTATION AND TRADE
OFFS‖Digital system testing,project report.

[9] A. J. van de Goor, ―Using March tests to test SRAMs”,IEEE Design &
Test of Computers, vol. 10, no. 1, pp. 8-

14, Mar. 1993.M. Young, The Technical Writer's Handbook. Mill
Valley, CA: University Science, 1989.

[10] J.-F.Li,K-L.cheng,C.-T.Huang,and C.-W.Wu,‖March based RAM
diagnosis algorithm for stuck-at and coupling fauls‖,Proc.IEEE
ITC,2001,pp.51-55.

[11] I.Kim,Y.Zorian,G.komoriya,H.pham,F.P.Higgins,and
J.L.Lweandowski,‖‖Built in self repair for embedded high density
SRAM‖,in proc.IEEE VLSI systems(DFT),Albuqueque,Nov.1999,pp
1112-1119.

[12] R.P reuer and V.K. Agarwal,‖Built-in self-diagnosis for repairable
ambeded RAMs‖,IEEE Design & Test of computers,vol.10,no.2,pp.24-
33,une1993.

.

 Manojit Panda got his B.Tech.

degree in Electronics and
Communication Engineering from
Biju Pattnaik University of
Technology, Rourkela, Odisha in
the year 2010. He is now pursuing
his M.Tech. degree in
Microelectronics and VLSI from
National Institute of Technology,
Durgapur. His area of interest
includes digital system design,
circuit and memory testing.

 Kirtisova Behera received her
B.Tech degree in Electronics and
communication Engineering from
Biju Pattnaik University of
technology, Rourkela, Odisha in the
year 2007.She is now pursuing her
M.Tech degree in
Microelectronics and VLSI from
National Institute of Technology,
Durgapur. Her area of interest
includes VLSI design, memory
testing and Diagnosis.

 Deepak Agarwal has completed
his B.Tech Degree from Gautam
buddha Technical University,
Lucknow India in Electronics &
communication Engg. He is now
Pursuing his M.Tech degree in
Microelectronics & VLSI from
National Institute of Technology,
Durgapur, India. His area of
interest includes Digital Design,
microprocessor and memory
testing.

Proc. of the Second Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering -- CEEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6260-5 doi:10.3850/ 978-981-07-6260-5_43

