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Abstract— This paper presents Artificial Neural Network 
based critical clearing time (CCT) calculation for IEEE-9 bus 
system. The critical clearing time (CCT) at the critical 
contingency is considered as an index for transient stability. By 
selecting loads and generators active and reactive power as a 
input neurons critical clearing time is determined. The 
modeling and simulation results for load flow and CCT 
calculations are accomplished using the simulation package 
ETAP. The ANN training and testing is implemented in 
MATLAB software 
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I. INTRODUCTION 
 

The transient stability plays an important role in power 
system stability assessment. It deals with electromechanical 
oscillation of synchronous generators, created by a 
disturbance in the power system.  It is determined by 
observing the variation of the rotor angle as a function of 
time in the fault period. The stability analysis of power 
system may involve the calculation of Critical Clearing time 
(CCT) for a given fault which is nothing but, the maximum 
allowable value of the clearing time for which the system 
remains to be stable. If the fault is cleared within this time, 
the power system remains stable. However, if the fault is 
cleared after the CCT, the power system is most likely to 
become unstable. Thus, the estimation of CCT is an 
important task in the transient stability analysis for a given 
contingency. In this paper, an IEEE 9 Bus system is 
considered for the Transient StabilityAnalysis.  
 
Critical clearing time (CCT) is a measurement of power 
systems Transient stability. It denotes the secure time for 
clearing the contingency, usually three-phase ground-fault. 
A large value of CCT indicates that the power system has 
ample time to clear the contingency. CCT depends on 
generator inertias, line impedances, grid topology, and 
power systems operating conditions, fault type and location. 
For a single machine infinite bus power system, CCT 
calculations are straight forward. While for the case of 
multi-machine power systems, CCT is always obtained by 
time-domain simulations, and hence the evaluation of CCT 
can only be done off-line [1, 2]. 
 
Fast and efficient methods for transient stabilityanalysis 
have been sought due to the increase in sizeand complexity 
of power systems. A variety of methods for transient 

stability assessment have been proposedin the power 
systems literature. These arenumerical integration, direct 
methods, probabilisticmethods and pattern recognition 
methods.To reduce the computation burden and implement 
on-line assessment, a number of studies have applied 
artificial neural networks (ANN) to calculate the CCT for 
multi-machine power systems [3–10]. 
 
This paper presents a feasibility study of artificial neural 
networks (ANNs) for transient stability assessment for 
power systems.The ANNs use the system operating 
variables such as generator‟s output power and load demand 
as inputs. Section II describes the simulation of the IEEE 9-
bus test system in ETAP. Section III gives a brief 
description of the extended equal area criteria and its use in 
the calculation of the critical clearing time of a test power 
network. The training and the applicationof the neural 
network for transient stability assessment are described in 
Section IV. The presentation and discussion of the results 
are given in Section V.  The paper‟s conclusions are 
presented in Section VI. 
 

II. SIMULATION OF THE IEEE 9 
BUS SYSTEM 

 
The IEEE 9-bus test system is simulated on ETAP 

7.5.1. The single line diagram (SLD) of the simulated test 
system on ETAP is shown in Fig 1. For this test system 
generator and line parameters are given in appendix. The 
total generation is 519.5MW and total load is 315MW. The 
test system contains 6 lines connecting the bus bars in the 
system. The generator is connected to network through step-
up transformer at 230kV transmission voltage. The results of 
load flow analysis when all generators and loads are 
operating at rated power are given in Table.1 
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FIG. 1 SINGLE LINE DIAGRAM OF IEEE-9 BUS TEST SYSTEM 

TABLE.1 LOAD FLOW REPORT 

Bus 
No. 

Bus 
KV 

Voltage 
Mag. (%) 

Voltage 
Angle 

Gen. 
(MW) 

Gen. 
(MVAR) 

Load 
(MW) 

Load 
(MVAR) 

Bus 1 16.5 104.0 0.0 70.074 36.848 0 0 

Bus 2 18.0 102.5 9.5 163.00 21.017 0 0 

Bus 3 13.8 102.5 4.7 85.00 -5.165 0 0 

Bus 4 230 101.918 -2.1 0 0 0 0 

Bus 5 230 98.088 -3.8 0 0 120.70 48.099 

Bus 6 230 100.615 -3.7 0 0 91.112 30.365 

Bus 7 230 101.505 3.9 0 0 0 0 

Bus 8 230 100.722 0.8 0 0 101.454 35.494 

Bus 9 230 102.795 2.0 0 0 0 0 

 

III. CALCULATION OF CRITICAL 
CLEARING TIME USING 

EEAC 
 

A great interest has been raised on EEAC, since it was 
proposed in literature [12-16], because it is able to yield fast 
and accurate transient stability analysis. In order to 
determine the stability of the power system as a response to 
a certain disturbance, the extended equal area criterion 
(EEAC) method described in [16] decomposes the multi-
machine system into a set of critical machine(s) and a set of 
the „remaining‟ generators. The machines in the two groups 

are aggregated and then transformed into two equivalent 
machines to form a One-machine-Infinite-Bus (OMIB) 
system. Some basic assumptions for EEAC are : (i) The 
disturbed system separation depends upon the angular 
deviation between the following two equivalent clusters the 
critical machine group(cmg) and the remaining machine 
group(rmg), (ii) The partial centre of angles (PCOA) of the 
critical machine group (      and The partial centre of 
angles (PCOA) of the remaining machine group      : 
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Based on the above assumption, a multi-machine system can 
be transformed into equivalent two-machine system. Then 
the two machine equivalent is reduced to a single machine 
infinite bus system. The equivalent OMIB system model is 
given by the following equation: 
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The accelerating and decelerating areas are given by[17], 
[18]: 
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Where 0 denotes original (pre-fault), D during fault, and P 
post-fault,     is the critical clearing time.  
The transient stability margin:            , at the 
critical clearing time   ,               
 
Solving the equations (6) & (7), the critical clearing angle 
    can be computed. The value of critical clearing time 
(CCT) can be computed [18] by following formula: 
 

                         √
  

  
                                              

 
Where, 
   = generator output before fault  
   = pre-fault angle 
 

IV. USE OF ARTIFICIAL NEURAL 
NETWORKS FOR 
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ESTIMATING CRITICAL 
CLEARING TIME 

 
The neural network was inspired by its inception by the 

recognition that the human brain computes differently than 
that of a conventional digital computer. The brain acts as a 
highly complex, non-linear and parallel computer. An 
artificial neural network (ANN) is a flexible mathematical 
structure which is capable of identifying complex nonlinear 
relationships between input and output data sets. A neural 
network is a parallel-distributed processor made up of 
simple processing units, is known as neurons, which has a 
tendency for storing, and making easily available, 
experimental information. 

A three-layer feed-forward network with back-
propagation algorithm has been applied for the ANN 
training of the system under study. The data is propagated 
from the input layer to the hidden layers before reaching the 
final output layer. The error signals at the output layer are 
then propagated back to the hidden and input layers. The 
sum of square error is then minimized by adjusting the 
synaptic weights and bias in any layers during the training 
process of ANN models as shown in Fig. 2. 
Where, 
uii: Weight between the ith  neuron of input and ith  neuron of 
first hidden layer 
vii: Weight between the ith  neurons of two hidden layers 
wi: Weight between the ith  neuron of second hidden layer 
and output layer 
bi

i: Bias Input 
For a multi-layer network, the net input nk+1(i) and 

output ak+1(i) of neuron i in the k+1 layer can be expressed 
as: 

1 1 1

1

( ) ( , ) ( ) ( )
sk

k k k k

j

n i w i j y j b i  



          (9) 

1 1 1( ) ( ( ))k k ka i f n i                                    (10) 

By representing the sum of the output square error as the 
performance index for the ANN, the error function is given 
by 

1 1

1 1
( ) ( ) ( )

2 2

R R
k kT T

r rr rr r
r r

E e eq qa a
 

    
  (11) 

Where k
r r re q a   is the output error and k

ra is the final 

output of the rth input. The Levenberg–Marquardt algorithm 
is used to minimize the mean square error function in 
equation (11).  
When fault is occurred at the end of line 7-5 nearby bus 7, 
the real generator power (   ,     and    ), reactive 
generator power (   ,     and    ), load real power (   , 
   and   ) and load reactive power (   ,    and   ), are 
selected as the input neurons of the ANN model, while the 
output neuron defines the critical clearing time   . The 
number of neurons in input layer is equal to the number of 
inputs i.e. 12 while the output layer has one neuron. The 
selection of number of neurons for the two hidden layer is 
made on hit and trial method basis, comparing the 
regression plot of each and choosing the best among them. 
The best performance is obtained with 20 neurons in 1st 
hidden layer and 10 neurons in 2nd hidden layer.The 
transient stability analysis for 100 cases have been carried 
out with the values of    ,             ,    ,   ,   , 
   ,   ,   ,     and    . The 80% of the total cases is 
selected for the ANN training, 10% for testing and 10% for 
validation. The corresponding critical clearing time as 
calculated by ANN with LMBP algorithm (   ) for different 
load-generation scenarios and fault is occurred on the end of 
line 7-5 at near bus 7 is shown in Table.2. 

The Table 2 summarizes the results of training the ANN. It 
illustrates the outputs of the ANN and the actual CCT 
computed with the EEAC method. The table shows 
randomly selected samples of the inputs and outputs of the 
ANN and the actual CCT. The results show a close 
agreement between the output of the ANN and the 
calculated CCT. It also shows the RMS values of the error 
and the difference between the ANN outputs and the CCT 
values for a fault at end of line 5-7 nearby bus 7, obtained 
by the EEAC method. This table indicates that the CCT 
value outputs of the ANN match the CCT obtained by the 
EEAC method with unacceptable level of accuracy. 
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Fig. 2 Three-layer feed forward neural network

TABLE 2: ANN-BASED CCT CALCULATION  
                                                 Actual 

CCT 
ANN 

Output  
Error (%) 

 

0.701 1.63 0.851 0.368 0.210 -0.052 1.25 0.90 1.00 0.50 0.30 0.35 0.31 0.33 
 
 

-0.0175 

0.325 1.62 0.81 -0.356 0.047 0.181 0.12 0.73 1.69 0.15 0.21 0.24 0.31 0.34 -0.0303 

0.283 1.58 0.63 0.174 0.185 -0.036 0.25 0.70 0.82 0.34 0.20 0.19 0.27 0.29 -0.0218 

0.345 1.47 0.63 -0.070 -0.060 -0.299 0.75 0.67 0.92 0.28 0.12 0.08 0.31 0.31 0.0044 

0.806 1.25 0.81 0.181 -0.029 -0.198 1.03 0.67 1.18 0.10 0.64 0.04 0.43 0.42 0.0153 

0.153 1.11 0.78 -0.050 0.429 -0.394 0.46 0.94 0.69 0.25 0.03 0.52 0.39 0.38 0.0065 

0.131 1.41 0.68 0.267 0.316 -0.539 0.68 0.76 0.76 0.34 0.16 0.25 0.30 0.36 -0.05717 

1.302 1.58 0.74 0.564 0.403 -0.234 1.09 0.67 1.84 0.22 0.94 0.14 0.41 0.39 0.0160 

0.788 1.58 0.89 -0.308 0.343 0.028 0.92 0.91 1.34 0.17 0.12 0.43 0.35 0.36 -0.0031 

1.082 1.64 0.67 0.399 0.250 0.063 0.71 1.08 1.60 0.33 0.25 0.74 0.34 0.34 0.0023 

0.685 0.98 1.00 -0.090 -0.280 -0.082 1.11 0.69 0.80 0.09 0.34 0.08 0.54 0.52 0.0261 

1.106 1.28 0.80 0.317 -0.011 -0.020 1.20 0.89 1.04 0.47 0.22 0.33 0.45 0.46 -0.0050 

0.955 1.38 0.79 0.037 -0.303 -0.163 1.06 0.75 1.37 0.21 0.21 0.14 0.39 0.39 0.0056 

0.441 1.68 0.71 0.114 -0.152 -0.050 1.28 0.66 0.87 0.24 0.17 0.12 0.26 0.27 0.00084 

0.578 1.39 0.69 0.057 -0.279 0.146 0.64 1.00 0.85 0.13 0.33 0.23 0.34 0.33 0.0072 

0.518 1.57 0.82 0.333 0.219 -0.292 0.85 1.31 0.71 0.40 0.46 0.03 0.31 0.33 -0.0189 

0.917 1.49 0.71 0.226 0.361 -0.139 0.74 1.57 0.74 0.25 0.87 0.02 0.37 0.35 0.0158 

0.200 1.92 0.59 -0.149 0.372 -0.158 0.87 0.69 0.71 0.47 0.20 0.24 0.21 0.20 0.0094 
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0.396 1.29 0.53 0.191 0.417 -0.127 0.84 0.69 0.71 0.89 0.27 0.19 0.36 0.35 0.0149 

1.719 1.00 0.50 -0.202 0.561 -0.360 0.92 1.04 1.07 0.23 0.17 0.23 0.12 0.13 -0.0033 

0.710 1.80 0.47 0 0.165 0.129 0.96 1.06 1.10 0.46 0.36 0.09 0.27 0.26 0.0109 

0.680 2.28 0.49 0 0.397 0.020 1.05 1.28 1.08 0.11 0.38 0.31 0.21 0.22 -0.0165 

0.728 1.21 0.49 -0.112 0.203 -0.118 0.74 0.64 0.97 0.24 0.20 0.39 0.42 0.36 0.0581 

V. Conclusion 

ANN is a very fast tool for CCT estimation compared to 
other methods but should be trained carefully over a wide 
hyperspace in order to avoid over-fitting. The ANN is 
trained once for a given power system for any expected 
situation and then used for any load condition in the system. 
Results obtained using an artificial neural network to predict 
critical clearing times for a specific fault and clearing modes 
in power system. The pre fault active and reactive powers of 
all generators and loads are used as ANN inputs. For IEEE-9 
bus system it is found that for most testing examples the 
CCT was predicted with good accuracy. 

 

 

 

APPENDIX 
 

Generator Data at 100MVA Base 
Generator G1 G2 G3 

Rated MVA 
(G) 

247.5 192 128 

kV 16.5 18.0 13.8 

Power Factor 1.0 0.85 0.85 

Speed(rpm) 150 3000 
 

3000 

Type Hydro Steam Steam 

   (pu) 0.1460 0.8958 1.3125 

   (pu) 0.0608 0.1198 0.1813 

   (pu) 0.0969 0.8645 1.2578 

    (pu) 0.0969 0.1969 0.25 

 

  (leakage) 
(pu) 

0.0336 0.0521 0.0742 

     8.96 6.00 5.89 

     0 0.535 0.600 

Inertia 
constant (H) 

23.64 
MJ/MVA 

6.40 
MJ/MVA 

3.01 
MJ/MVA 

 

Line Date at 230kV, 100MVA Base 

Bus to Bus 
(Line) 

R (pu) X(pu) Half Line 
Charging /2(pu) 

1-4 0.0000 0.0576 0.0000 

4-5 0.010 0.085 0.088 

5-7 0.032 0.161 0.0153 

4-6 0.017 0.092 0.079 

6-9 0.039 0.170 0.179 

7-2 0.0000 0.0625 0.0000 

7-8 0.0085 0.072 0.0745 

8-9 0.0119 0.1008 0.1045 

9-3 0.0000 0.0586 0.0000 

 

 

REFERENCES 
 
[1] Moechtar M, Cheng TC, Hu L. Transient stability of power system – a 

survey. In: Conference record of microelectronics communication 
technology producing quality products mobile and portable power 
emerging technologies; 1995. p.166–71. 

[2] Pavella M. Power system transient stability assessment – traditional 
vsmodern methods. ContrEngPract 1998;6:1233–46. 

[3] El-Sharkawi, M. A. Neural Networks‟ power – how they help in electric 
loadforecasting and security assessment. IEEE Potentials 
1996;15(5):12–5. 

[4] Sobajic DJ, Pao YH. Artificial neural-net based dynamic security 
assessment forelectric power systems. IEEE Trans Power System 
1989;4(1):220–28. 

[5] Pao YH, Sobajic DJ. Combined use of unsupervised and supervised 
learning fordynamic security assessment. IEEE Trans Power System 
1992;7(2):878–84. 

[6] Sharaf AM, Lie TT, Gooi HB. Transient stability and critical clearing 
timeclassification using neural networks. In: Proceeding of 2nd IEE 
international conference on advances in power system control, 
operation and management;1993. p. 365–72.  

[7] Lo KL, Tsai RJY. Power system transient stability analysis by using 
modifiedKohonen network. In: Proceeding of IEEE international 
conference on neural networks; 1995. p. 893–8. 

 [8] Paucar VL, Fernandes FC. A methodology based on neural networks 
for thedetermination of the critical clearing time of power systems 
transient stability.In: Proceeding of IEEE international conference on 
power systems; 2002. P.2669–73. 

[9] Bettiol AL, Souza A, Todesco JJ, TeschJr JR. Estimation of critical 
clearing timesusing neural networks. In: Proceeding of IEEE 
international conference onpower technology; 2003. 

[10] Pothisarn C, Jiriwibhakron S. Critical clearing time determination of 
egatsystem using artificial neural networks. In: Proceeding of IEEE 
PES summermeeting, vol. 2; 2003. p. 731–5. 

[11] Anderson, P. M., and Fouad, A. A., "Power System Control and 
Stability", New York: Wiley Interscience, 2002. pp. 34 -56. 

[12] Xue Y., Van Cutsem T., Ribbens-Pavella, M.: Extended Equal Area 
Criterion, Justifications, Generalization, Applications, IEEE Trans. on 
Power Systems, 1989, vol.4, no.1, pp.44-52 

Proc. of the Second Intl. Conf. on  Advances in Computer, Electronics and Electrical Engineering -- CEEE 2013 
Copyright © Institute of Research Engineers and Doctors. All rights reserved. 

ISBN: 978-981-07-6260-5 doi:10.3850/ 978-981-07-6260-5_45 
 



 

225 
 

[13] Xue Y., Wehenkel L., Pavella M., et al: Extended Equal Area Criterion 
Revisited, IEEE Trans. PowerSystems, 1992, vol.7, no.3, pp.1012-
1022 

[14] Xue Y., PavellaM.:Critical Cluster Identification in Transient Stability 
Studies, IEE Proc. Pt. C, 1993, vol.140, pp. 481-480 

[15] Xue Y., Rousseax P, Gao Z, Wehenkel L., Pavella M., Belhomme M., 
Euxibie E., Heilbronn B.: Dynamic Extended Equal Area Criterion. 
Part 1: Basic Formulation, Athens Power Technol., 1993 

[16] Y. Xue and M. Pavella, “Extended equal-area criterion: an analytical 
ultra-fast method for transient stability assessment and preventive 
control of power systems,” International Journal of Electrical Power & 
Energy Systems, vol. 11, no. 2, pp. 131–149, Apr. 1989. 

[17] Pai, M. A., “Energy function analysis for power system stability”, 

Kluwer Academic Publishers Boston/London, 1931 
[18]Ibrahim M. El-Amin, Abdul-Aziz M. Al-Shames, “Transient stability 

assessment using artificial neural networks” Electric Power System 

Research,1997, pp. 7-16 
[19] Kato, Y., Iwamoto, S., "Transient stability preventive control for stable 

operating condition with desired CCT," Power EngineeringSociety 
General Meeting, 2003, IEEE , vol.3, no., pp. 4 vol. 2666, 13-17 July 
2003 doi: 10.1109/PES.2003.1267434 

[20] Dong, Y., Pota, H.R., "Transient stability margin prediction using 
equal-area criterion ," Generation, Transmission and Distribution, IEE 
Proceedings C , vol.140, no.2, pp.96-104, Mar 19 

Proc. of the Second Intl. Conf. on  Advances in Computer, Electronics and Electrical Engineering -- CEEE 2013 
Copyright © Institute of Research Engineers and Doctors. All rights reserved. 

ISBN: 978-981-07-6260-5 doi:10.3850/ 978-981-07-6260-5_45 
 


