

70

Security Metric Framework for the Software
Architecture and Design Level

An Empirical Evaluation
Irshad Ahmad Mir, S.M.K Quadri

Abstract—the field of security metric and security evaluation is
multifaceted and multidimensional in nature, which needs great
care and systematic approach to evaluate. The security evaluation is
a continuous process that should be carried out throughout the
different software development stages and also in the operational
phases. In practice the secure software development is based upon
the guidelines and rules for secure design and coding. Even if the
secure software development process and guidelines are to be
followed, the resultant level of security remains unknown to the
development team. A security evaluation framework that can be
applied at the early system development stages,the derived metrics
that act as indicators of security level of the system and point out the
most critical component of the system , in order to provide the basis
for the system developers to take the design decisions regarding
security is the foremost requirement of secure software development.
In this study we haveproposed the extended security evaluation
framework which strikes at the architectural and design phase of
the software lifecycle, along with the empirical evaluation on a
running system. In The proposed framework the mathematical
modeling to derive the security metrics has been adopted. The
empirical evaluation is carried out on a Finger Print Attendance
Automation system (FASS) developed for the department of
computer science UoK.

Keywords:-Software architecture, Security Metrics,
Security Evaluation.

I. Introduction
The main focus in the field of software security remained
towards the application of protection mechanism after the
system development and the security consideration during the
development phase mainly dependent upon the secure design
and coding guidelines. Lord Kelvin observed that if we can
measure it we can improve it.

Irshad Ahamd Mir.

PhD. Research Scholar University of Kashmir
India.
irshad.mir@hotmail.com

S.M.K. Quadri.
Head Department of Computer Science University of Kashmir.
India.
quadrismk@hotmail.com

Information Security also comes under the same principle of
measurement.Traditionally security is treated as an
afterthought, in which the protection mechanisms employed
after the development stages of the software [1]. Keeping in

view the current vulnerable networked environment, security
issues must be taken into consideration right from the early
software development phases. If secure software development
is to be followed, still the level of security remains unknown,
which goes against the principle of Lord Kelvin i.e. “ if you

can’t measure it then you can’t improve it”. Security
evaluation framework that provide the quantitative or
qualitative indicators of the security and point out the most
critical element of the system in the early development phase
can considerably help in sound decision making regarding the
security of the system. The question now is where in the
development phase the security evaluation is to be carried out?
Since the design and the architecture of a system act as a
blueprint of the overall system, so it becomes the best level for
the evaluation security. In this study we have proposed an
extension of our previously proposed security evaluation
framework [1] for the component based software Architecture
and Design (CBAD) and the derived metrics for the four main
attributes of security, the confidentiality, integrity , availability
and dependency from it. Our evaluation framework is based on
component composition, dependencies among the components
in the system composition and data/information flow across the
components. We carried out the empirical evaluation of the
proposed framework by reverse engineering process on a
“Finger print Attendance Automation system” (FAAS)

developed for the department of computer science, UoK. It is a
web application developed in .NET framework 2008 using C#
and Oracle as the backend database.
In section II we present an overview and terminology for
software architecture and design and the selection architecture
and design selection for the security evaluation. In Section III
we present our security evaluation framework. Section IV
presents the empirical evaluation of the proposed framework,
finally the conclusion and references in section V and
references.

II. Architecture and Design
Selection

Since there are various software architectural and design
modeling techniques present, such as Object oriented Analysis
and design (OOAD), Enterprise Architecture Framework (EA),
Service oriented Architecture and Design (SOAD) and
Component Based Design(CBD) are the most common. The
question is which of the architectural and design modeling
technique to be followed for the specification of system
structure so that it will be feasible for the analysis and

Proc. of the Second Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering -- CEEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6260-5 doi:10.3850/ 978-981-07-6260-5_17

mailto:irshad.mir@hotmail.com

71

evaluation of quality attributes. Each of the modeling
technique have their own merits and range of tools used for the
specification of the architecture and design. Adopting one style
over other is a very difficult task. Among the above mentioned
architectural and designs Service Oriented Architecture (SOA),
Component based development (CBD) and Object Oriented
Analysis and Design (OOAD) are the core software
architectural and design modeling techniques extensively
adopted in software development. The SOA, CBD, and OOAD
are not isolated from one another; instead they can be applied
progressively to in the system development, each with different
level of abstractions. Below figure (2) [2] shows the
application architecture layers of the software architectures.
As depicted in the figure (2), three level of technology layers
are there for application architecture. At the higher level there
is a service level which act as a great way to expose an external
view of a system, with internal reuse and composition using
traditional component design which may in turn use the object
oriented design. The three layers (fig. 1) of application
architecture are: Service Level, Component Level and
Object/Class Level.

Figure 1. Application Architecture Layers

Choosing particular software architectural and design approach
for the evaluation of quality attributes in general and for the
evaluation of security in particular, is very difficult. On one
extreme the SOAD is much coarse-grained in nature withe

granularity focused on the loosely coupled services which are
at the very high level of abstraction hiding the internal
functional units of the service. Selection of SOAD of a system
for the evaluation of security restricts the evaluation process
from capturing the lower level details of the system. On the
other extreme of Class/Object level provides the granularity at
the class and object level which is very fine-grained view of a
software architecture and design. Selection of Class/Object
level architecture for the evaluation of security , no matter
provides the lower level details about the design and
architecture of the system but it makes the evaluation process
too complex and bind the lower level details too early at the
architectural and design phase of the system. The Component
Layer in above diagram 4.3 is in between the two extremes. A
service internally may exhibit the components composed
together in a composition to provide the required service, these
components may internally build by the lower level classes and
objects. The position of Component Based Architecture and
design in the architectural hierarchy are neither too coarse-
grained like services that hide the internal functional units nor
too coarse-grained to make the evaluation process too complex
to bind the lower implementation level details. From the
literature survey and our experience, component layer is the
best suited for the evaluation process of any quality attribute of
the system. Keeping in view the various factors, like
granularity, abstraction, level of functionality exposed,

flexibility provided and required efforts we have chosen
Component Based Architecture and Design approach for the
proposed Security Evaluation Framework.

A. Component Based Architecture &
Design

Component Based Architecture and Design or Component
Based Software Engineering (CBSE) is a successor of OOAD
[3] and has been supported by commercial component
frameworks such as Microsoft’s COM, Sun’s EJB and

CORBA. In Component based Architecture and Design
(CBAD) the fundamental unit of a large scale software
construction is a component. The system in CBAD is
structured as a collection of components and their
interconnection and composition. A software component is a
unit of composition with contractually specified interfaces and
explicit context dependencies [4].The abstract view of a
component is shown in below figure 2. It consists of three main
parts
 Component Name: The specified name of the component
 Code: The functionality of the component
 Interfaces: Both the required and provided interface to

reveal the usage and functionality of the component in
the system composition.

Figure 2. Software Component Model

B. Component Composition
In Component Based Software Development (CBD), a single
component provides a unit of functionality and it may
consume the services provided by other components and
produce the output which may be consumed by other
components in the system. Such interaction among
components results in a system with components interlinked
with one another in certain hierarchy which is also known as
component composition. Composition is a central issue in
Component Based Software Development (CBD). In CBD a
component may be composed of several components and the
entire system forms a component hierarchy. This notion of
component composition allows developers to organize a
software system in composition hierarchy. Since component
provides a mean of reusability, it is fairly possible that an
existing component from a component repository be fetched
and plugged into a system. In a composition in which verities
of components are involved, a composition language is
desired. The composition language should have suitable
semantics and syntax compatible with the components in the
component model[4].There is no composition language in the
most current component model. For instance Kola uses
connecter as glue code for composition. Korba and UML 2.0
use the UML notations.

Proc. of the Second Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering -- CEEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6260-5 doi:10.3850/ 978-981-07-6260-5_17

72

According to[5], component composition can take place
during different stages of the component life cycle, like
design phase, deployment phase and runtime phase:

Since the component composition depicts the overall structure
of the system including interaction, cooperation and
coordination. In our previous work [1], component
composition of some of the well-known component modeling
approaches have been presented.

III. Security Evaluation
Framework: Architecture and

Design Phase
In this section we present the extended security evaluation
from work which is initially based up on our previously
proposed security evaluation framework for component based
software system [1]. The proposed security evaluation
framework is based on the following factors

1. Component Composition and Dependencies
2. Inter-Component Data/information and resource

sharing.
We have derived the security metrics for the main four

attributes of security, the dependency,confidentiality, integrity
and availability based on the above two factors.

A. Component Composition and
Dependencies

A single component seems as atomic in nature. To provide the
services to its client a component normally calls upon the
service of other component. Such a scenario where a
component calls upon the service of other components which
in turn may call upon the service of other components and so
forth, have to be inter-linked together in certain order to
properly and efficiently provide the required functionality to its
clients is known is composition of the system or component
composition. With the advent of a networked environment the
composition of such components may be either local (bound to
local server) or remote (on multiple servers). Similar to the
object-oriented systems, in which the object is the basic
building block, in CBSs, component is the basic, but usually a
black box building block. As new component gets plugged into
the composition, it has the effect on that part or overall system.
The newly added component in the composition may refer to
other components and can be used by others in the
composition. The compositions of the components certainly
incur the dependencies both the direct and indirect (via
intermediate components) among the components.
The composition of components results in cooperation,
coordination, and interaction among them which in turn results
in the dependencies among them in order to provide the

complex system functionality. At the top there exist two types
of dependencies which are further four types of dependencies.

 Direct Dependency : involves a direct association
between two components

 Indirect Dependency: involves the association
between component through intermediate components

According to[6], there are at least four types of dependencies
which are explicit direct dependency, explicit indirect
dependency, implicit direct dependency and implicit direct
dependencies. These dependencies show the nature of
dependencies which are either direct or indirect and also
implicit or explicit. Based upon the functionality and the
business logic there are several dependencies that get incurred
into the system among the components [7].
A system composed of several components (functional units)
can be represented in graphical form using a particular
modeling approach. In our case we have adopted the UML
based component modeling, due to the diversity of tools
present in it. In order to simplify the process we take into an
account an illustrative exampleof a system composed of
multiple component for illustrative purpose shown in figure
(4)below using Visual paradigm for UML 9.0. As depicted in
figure (4), beside the implicit dependencies that occurs by the
interconnection of provided and required interface (includes
both data and interface dependencies) for the provided and
required functionalities, the dependencies are also specified
explicitly by dashed arrow lines. The direction of the line
shows that the source and the destination of a dependency.
We depict the dependencies among the components into an
adjacency matrix (AM) representation[7].The Components are
organized as rows and columns with index
respectively. If a component in row is dependent on
other component in row then the corresponding element in
the adjacency matrix (AM) is marked as , otherwise it is . In
general the values for each of the element of adjacency matrix
 = . Where:

 {

From The above equation 1 the dependency matrix (DM) for
the system composition figure (3) is

Figure 3. Direct Dependency Matrix

Proc. of the Second Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering -- CEEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6260-5 doi:10.3850/ 978-981-07-6260-5_17

73

Figure 4. An Illustration of system’s Component Composition and Dependencies

The matrix above figure (4) depicts the direct dependency
matrix i.e. it depicts the direct association among the
components in the composition. In order to calculate all the
indirect possible dependencies among the components (direct
as well as indirect) we apply the Warshall’s algorithm of

transitive closer[8] to compute the Full Dependency matrix
(FDM)of the illustrative system composition of figure (4) and
the resultant matrix is shown in below figure (5).

Figure 5. Full Dependency Matrix (FDM)

The Full Dependency matrix in above figure (5) shows all
possible dependencies (direct as well as indirect dependencies
of each of the component of the system depicted in figure (4).
Beside the dependencies types of presented earlier we define
two more types of dependencies associated with a component
in the composition, the In-Dependency and Out-Dependency.

 In-Dependency: In-Dependency of a component
 is defined as the other components in the
composition that are directly or indirectly dependent
up on the component .

 Out-Dependency: Out-Dependency of a component
 is defined as the other components in the
composition up on which component depends
for the functionality.

We further define two more terms related to the In-
Dependency and Out-dependency of a component which are:

 Degree-In: denoted by is defined as
the number of component in the In-Dependency of

the component . Degree-In of a Component
can be easily calculated by counting the number of
 in the corresponding column of the Full
Dependency Matrix). Mathematically:

 Degree-Out: denoted by of
component is defined as the number of other
components in the system composition the is
dependent upon. Degree-Out of a component can be
easily calculated as the number of in the
corresponding row of the Full Dependency Matrix
(FDM).
Mathematically:

 ∑()

And

 ∑()

The total degree of dependencies denoted of a
component can be calculated as

Where .

In order to keep the result on the similar scale the
 is

Where .
The aggregated level of dependencies of the overall system
denoted by is:

Proc. of the Second Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering -- CEEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6260-5 doi:10.3850/ 978-981-07-6260-5_17

74

∑

Where is the total number of components in the system.
Based upon the dependencies (direct as well as indirect) we
derive and propose the security matric for the availability for
each of the component and then for overall system.

B. Availability
Availability ensures that the service provided by software, its
component or network should remain available to its clients in
timely manner. In the current networked environment the
software architectures are now shifting from simple standalone
application to large distributed architectures based on OSI or
J2EE n-tiers. In case where the composition of components is
remote the provided functionalities of the components are
accessed by remote procedure call (RPC) which requires the
invocation, marshaling and unmarshallingg of the parameters.
In a functional dependency graph of component, one
component may invoke a call and wait for the provided
services of second component which in turn requires the
functionality of third component and so forth. Such a chain
of functional dependencies among components will certainly
results in delayed response time at each hop of the dependency
chain. The delay involved at each hop of the dependency chain
is due following factors:

 Processing Delay: Time taken by a component to
successfully process the request of its clients and
return the result from the invocation to the end result
returned.

 Transmission Delay: In case the composition of
components is remote then the transmission delay is
the transmission time alone excluding the processing
delay.

 The delayed response at each of the component can certainly
affect the availability (one of the main attribute of security) of
the system. Software developers must need to know
preferably quantitatively the possible delay incurred at each of
the components in the system composition and the aggregated
level of availability level of overall system.

C. Availability Metric
As mentioned previously a component can act as a hub in
which it handles the request from one group of components for
the required functionality and may in turn call up on the
provided services of other group of components on their
behalf .This process can form a chain which results in a
system with a delayed response time especially in distributed
and multiuser environment which affects the level of
availability of the system. The measurement of availability
results in to find the availability critical components, so that
the alternative corrective measures can be applied. In this
section we derive the availability metric for a component
 by taking into account the following factors.

 Processing Delay
 Transmission delay

We put forward the above theoretical concept of availability
metric into mathematical form. There may be a
relationship between each of the component in
and , i.e. for each of the component in
 , may call some or all of the components
including itself for required services on of behalf of
invoking components . Based on these factors we propose the
availability matrix of a component denoted by as:

 ∑ ∑

Where
 is the in-degree of component and

 is the out-degree of component and

 is the processing delay of the component in
 .
 is the transmission delay involved of component in

The proposed availability metric provides the software
developer the early indicator about the level of availability of
each of the component and can easily identify the availability
critical component of the system and enable to provide the
necessary corrective or preventive measures accordingly. The
range of output values of the above availability matric in
equation (4 and 5) will remain in a range of . More the
value tends towards 0 on the scale higher the effect on the
availability of the component. The aggregated availability of
the overall system denoted can be computed as:

∑

Where:
 is the total number of components in the system.
 The so proposed availability metrics is for the design and
architectural phase of the software development lifecycle but it
can also be applicable to the already developed systems by
performing reverse engineering to get to the design and
architecture of the system.

D. Inter-Component Data/Information
Flow.

The dependencies among the component (data dependency,
functional dependency, interface dependency, etc.) results in
the flow of data/information across the components. Such a
flow of data/information must be analyzed for the secure

Proc. of the Second Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering -- CEEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6260-5 doi:10.3850/ 978-981-07-6260-5_17

75

system operations. In this and the net subsequent section we
look at the data/ information flow among the components and
derive the metrics for the two fundamental security attribute ,
the confidentiality and integrity for each of the component and
in the composition and then for the overall system.
The flow of the data/information takes places through the
component interface (provided and required). These interfaces
can be defined as the component access point[9], enable the
clients to access the provided functionality of the components.
A component normally has multiple access points for the
different functions provided in the interface [10]. Since in
component Based Software Development (CBD) each
component is a separate entity designed with varying level of
protection then plugged together to provide the overall system
functionality. It becomes the most critical to analyze the flow
of data/information and resource sharing among the
components. Flow of data/information is characterized by two
types of flows, Inter-component flow and Intra-component
flow [11]:
 Inter-Component Flow: The exchange of data/information

(both In-flow and Out-flow) across the components
through provided and required interfaces. A component
provides information to its clients (a user, a required
interface or an engineering device) by an Out-flow
through its provided interfaces through a list of Out-
parameters and receives data/information from the client
by an In-flow through its required interfaces by a set of
In-parameters. Since only the interfaces are visible to the
clients of a component, such an exchange of
data/information takes place across the components
interface boundary.

 Intra-Component Flow: As a result of Inter-Component
data/information flow, provided and required interfaces of
a component pass /receive the data to/from component
body. For instance, in case of an In-flow in Inter-
component data/information flow the required interfaces
of the interface pass the data/information to the
component body for further processing or to update a
backend data source or a data structure. So in case of
Intra-component information and data/flow boundary is
confined to the component body.

 Below figure (6) shows the both types of data/information
flow of a component.

Figure 6. Component Information Flow

Like dependencies, the data/information flow among the
components can be either direct-flow or indirect-flow.
 Direct Data/Information-flow: In the direct information

flow the flow of information to/from between components
occur directly without passing through an intermediate
node or component. For instance if a component
invokes other component and passes the information to
it or returns something back to is known as direct
data/information flow

 Indirect Data/Information-flow: In the indirect flow of
data/information the flow takes place indirectly through
intermediate nodes or components. As an example if a
component invokes component which in turn
invokes and passes the data/information passed by
to or returns something to via is known as
indirect-data/information flow.

Software development team must need a concrete way to
analyze the flow of data/information (both direct and indirect)
across the components in a system. UML component
modeling provides a variety of tools and notations for the
specification of components, components interaction, and
interface specifications in order to design a system. The so
design of the system using UML modeling, the flow of data /
information can easily be analyzed.
Each component in the system composition possesses certain
resource such as data database access, files, data/ information.
Components in the composition can access the resources of
other components with certain privileges.
 As the design and architecture of a system evolve it becomes
complex and cumbersome to keep track of the flow of
data/information across the components. Such a scenario
results in security threat to the system especially the two main
concerns of the security of any system, the confidentiality and
integrity. In the next subsequent sections we propose the
metrics for the confidentiality and integrity of a component
and then for the overall system based on the following
parameters.

 Component dependencies
 Data/Information flow.
 Component interfaces.

E. Confidentiality Metric
Confidentiality of any system, resource or a network ensures
that unauthorized disclosure of data/information should not
occur. In the large complex software systems (comprised of
multiple components both local and remote) the flow of
data/information across the components becomes a critical
factor for the security of the overall system. Even if a system
builds with the protection mechanisms in place, the
data/information breach at one of the component can cause the
serious problem to the overall system. The derived metric aim
to analyze and provide the quantative indicators about the
level of confidentiality of each of the component and further
for the overall system.

Proc. of the Second Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering -- CEEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6260-5 doi:10.3850/ 978-981-07-6260-5_17

76

As mentioned earlier the inter-component data/information
takes placed through the provided and required interfaces of a
component. For the simplicity we redefine these two types of
interfaces as:
 Write-Interfaces: denoted by , are the required

interfaces of a component through which the In-flow of
data/information takes place.

 Read-Interfaces: denoted by , are the provided
interfaces through which the Out-flow of information
takes places.

The confidentiality is likely to be affected through a
component when both the read and write operations by
different components in the composition takes place. The idea
is to identify the level of such operations on a component and
accordingly quantify the resultant indicators. With respect to
our confidentiality metric we put forward the following
argument.
 Argument 1: The confidentiality of a component is likely

to be affected more as the number of reading components
in the system composition and dependency
(direct/indirect) with respect to the writing components.
For instance a component having number of reading
components (the components that are functionally
dependent on the provided services of and number of
writing components (the components in the system
composition whose services are required by). As the
increases for each of the component in the
confidentiality of is affected more, i.e. each of component
in is likely to have read access to component and all
the components in the dependency (direct/indirect) that
are capable of writing to .

The specified argument doesn’t mean that that the effect of

writing components is completely undesirable. If there is
no writing component the confidentiality will not be affected
at all, instead the argument states that an increase in
(reading components) has relatively higher impact on the
confidentiality than an increase in (writing components).
Also as specified earlier a component may have multiple
interfaces (both provided and required) which we defined
earlier as Write-Interface () and Read-Interface)
through which the in-flow and out-flow of data/information
takes place. Because these interfaces are the ports of a
component for the flow of data/information across the
component, so the number of these ports is also the candidate
for the overall confidentiality level of a component.
In order to derive the confidentiality metric for a component
 we have following parameters at hand.
 From equation (3), number of components that can likely

make an In-flow (write operation) directly or indirectly on
 is .

 From above equation (2), number of components that can
likely responsible for the Out-flow (read operation)
data/information directly or indirectly from
 is .

 Possible number of read-interfaces (provided interfaces)
through which the Out-flow (read operation) can take
place on is .

 Possible number of write-interface (required interfaces)
through which the In-flow (write operation) can takes
place on is .

Keeping in view the above argument (1), that in both the read
and write operation the confidentiality will be affected more as
the number of reading components (for each of
the writing component (the confidentiality
metric is :

Where is the confidentiality of component .
 is the degree of in-dependency (number of
components that directly or indirectly read from) component
 and
 is the degree of out-dependency (number of
components that directly or indirectly write to) component
 and
 and are the read and write (provided and required)
interfaces of component and , .
The so derived confidentiality metric, equation provides
the quantative indicator about the criticality of each of the
component with respect to the confidentiality. As stated
earlier the numbers of reading components have the higher
impact on the confidentiality of the component with respect to
the writing components. In the proposed confidentiality metric
such a scenario is taken into the consideration by squaring the
 .
The aggregated confidentiality metric for of the overall system
is

∑

Where, is the total number of components in the
composition.

F. Integrity Metric
Integrity in the third main pillar of the security of any
software, network, or any other system. The main objective of
the integrity is to ensure that unauthorized modification to the
data/information and information processing resource should
not take place. As with confidentiality, as the architecture and
design of the system evolves from the scratch to the full-
fledged design, it becomes very difficult to keep track of the
information flow and modification to the information and the
resources. System developers need some tools that can be
applied at the early design and after the design phase of the
system development to identify the most critical elements of
the system and preferably the quantative indicators of the level
of availability of each of the component and for the whole
system in order to make necessary decisions and adjustment

Proc. of the Second Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering -- CEEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6260-5 doi:10.3850/ 978-981-07-6260-5_17

77

early to reduce the cost and efforts needed in further system
life cycle. The integrity of a component is likely to be
affected when multiple component in the composition perform
a write operation (In-flow of data/information) on though
the write-Interfaces () (Required interfaces) of a component.
For instance a component may having certain resources say
a backend database or a file, other components can call upon
the services of and pass the data through the Write-
interfaces (to update the data/base and file. A weaker
component in the system composition can be attacked to
violate the integrity of the system. Bothe software developer
and the user must need to know the potential risk associated
with each of the component. Taking into account all the
parameters we propose the integrity metric of a component as:
Let be a component whose integrity level is to be evaluated.
The possible number of components in the system
composition that are responsible for the In-flow (write) of
data/information to would be in the Degree-Outof . As
mentioned earlier degree-out of a component is the number
of components in the system composition on which depends
for their provided services. These components are bound to
through its Write-Interfaces (or simply the required
interfaces. Mathematically if be the number of components
that are responsible for the In-flow data/information then:

Note that as from the above equation (3)
 represents all the possible components on which
 depends (directly or indirectly) for the provided services
and that can perform a write-operation on directly or
indirectly.
Also the number of ports or Read-Interfaces through which
the In-flow of data and information can take place is . The
complete integrity metric for a component is:

Where are the write-Interfaces of component and

 is the out-dependency of and

The so proposed metric in equation (12) provides the early
indicator of the level of integrity of each of the system. As
with the earlier equations, the resultant value lie in between
 with the lower values on the scale the higher chance of
integrity breach. The aggregated integrity metric for the
overall system is

∑

Where is the total number of components in the system
composition.

IV. Empirical Evaluation
In section (III) we have proposed a security evaluation
framework and derived the metrics and derived the metrics for
the four main attributes of the security, Dependency,
Confidentiality, Integrity and Availability. In order to analyze
the applicability and to check the feasibility of the proposed
frameworks and metrics, in this section we perform an
empirical evaluation of the proposed framework. The three
most common methods used in empirical evaluation are,
experiments, case studies and surveys [12]. Our empirical
evaluation falls under first category, the experimental
approach to present the process of applying the proposed
security evaluation framework.

A. Data Collection
The empirical evaluation is carried out on a running system
“Fingerprint Attendance Automation System “(FAAS)
developed by the author, for the department of computer
science UoK. Below figure (9) depicts the component based
Architecture and Design of FASS, The main features of the
system are:

 It is a web application that can be accessed over the
network.

 Having a backend database for the storage of data
from various components.

 Provides facility for the automated attendance
through finger print scanner attached to the server
through in the LAN. The output from the device gets
stored to the back end database. And also the
information from the system flows out to the
Fingerprint scanner.

 Beside the general attendance through Fingerprint
scanner, it provides an interactive interface to faculty
for individual class attendance for each of the subject
taught.

 Provides automated shortage generation.
 Account management for administrator faculty and

users with necessary privileges
We have performed reverse engineering process to get to the
design and architectural level of the system, and captured the
component based design and architecture of the system in
figure (9). The reverse engineering is carried out using tools
provided with the .NET framework to collect the various
classes and objects , their relations and dependencies with
each other in the system. Further the component level design
and architecture of the system is prepared using UML 2.0
modeling in “Visual Paradigm for UML 9.0” design tool. In

empirical evaluation we focused less on the specification of
the functionality of the system and collected the data required
for the evaluation which is.

 In-Dependency: denoted by in equation
(2) for each of the component of FAAS in figure (8).

 Out-Dependency: denoted by in
equation(3) for each of the component FAAS in
figure (8)

Proc. of the Second Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering -- CEEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6260-5 doi:10.3850/ 978-981-07-6260-5_17

78

 Read-Interfaces: denoted by , the number of the
reading (provided) interfaces for each of the
component of FAAS in figure (8).

 Write-Interfaces: denoted by , the number of the
writing (required) interfaces for each of the
component of FAAS in figure (8) .

In data collection table (1) the components , where
 are the components through which the
users interacts with the system and their names are suffixed by
“INT”. From the FDM figure (10) the of these
components is . Because the users depend up on the
provided services of these components so we change their
 form to . In general any component having
 , , and , then we set it
to in order to eliminate any divide by error .

As depicted in the figure (9) there are 24 fine grained
components in the system composition. Beside the implicit
interface dependencies among the components, the
dependencies (functional,control and interface) are also
specified explicitly by dashed arrow lines with the direction of
arrow specifies the source and destination of a particular
dependency. The components of the system are numbered
from to as shown in below data collection table (1). From
equation the direct dependencies matrix of the system
architecture and design (FASS) depicted in below figure (9) is
shown in figure (7). From the proposed framework (section
(III)), the full dependency matrix (FDM) of the direct
dependency matrix (DM) is calculated and depicted in below
figure (8).
Applying the derived metrics of the security evaluation
framework of above section (III), we calculate the level of
security with respect to the following attributes for each of the
component in the system composition.
 Dependency: Applying equation (5) we compute the

dependency level of each of the component.
 Availability: Applying the derived metric for the

availability equation (7), we have computed the level of
availability of each of the component. In case of
availability, since the system is a web application operating
on the local LAN, we have calculated the processing and
transmission delay together of each of the component
through a Remote Procedure Call (RPC) and calculated the
time elapsed from the invocation of a RPC request till the
result returned. The elapsed time for each of the component
is shown in below data collection table (1).The components
from 1-9 below table (1) are responsible for user interaction,
to act as an interaction between user and the rest of the
system; there transmission and processing delay is similar.

 Confidentiality: Applying the derived metric for the
confidentiality, equation (9) we computed the level of
confidentiality of each of the component.

 Integrity: Applying the derived metric for the integrity,
equation (12) we computed the level of availability of each
of the component

Figure 7. Direct Dependency Matrix of FASS

Figure 8. Full Dependency Matrix of FAAS.

The result of the above computed attributes for each of the
component is presented in table (2). As mentioned earlier the
range for output values is (0, 1). Lower the values on the scale
higher the effect on the component.
In order to calculate the security posture with respect to the
Dependency, Availability, Confidentiality and Integrity of the
overall system, we apply the following derived metrics.

B. Analysis
The result of empirical evaluation of “FAAS” is depicted in

below result table . The resultant values marked as red are
those components that are most critical with respect to the
specified security attributes. We have analyzed the resultant
values with the system architecture and design and it showed
us the positive response that these components are actually the
most critical in the system architecture and design and the
malfunctioning of these components will affect the overall
system functionality. The values marked as green are the next
critical for the system with respect to specified security
attributes. Comparing the result of empirical evaluation with
the architecture and design of the system is according to our
expectation if we look at the design and architecture of the
system and also the experience with the system in the running
environment, which shows the effectiveness of the proposed
framework.

Proc. of the Second Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering -- CEEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6260-5 doi:10.3850/ 978-981-07-6260-5_17

79

Figure 9. Component Based Architecture & Design of Finger Print Attendance Automation System (FASS)

Table 1. Data Collection Table

Ci
Component Name

Direct
In-Dep.

Direct
Out-Dep

Delay
 (P+T)

1 ShortageCheckINT 1 3 1 3 2 1 0.11

2 DoAttendanceINT 1 4 1 4 2 2 0.11

3 ViewUpdateMemINT 1 1 1 3 3 4 0.11

4 DeleteMemINT 1 3 1 3 2 3 0.11

5 AddUpdateDelSubINT 1 3 1 3 4 2 0.11

6 RegisterUserINT 1 2 1 4 2 3 0.11

7 FingerPrintScanner 5 2 6 3 2 3 0.30

8 LoginINT 1 2 1 2 1 1 0.11

9 CreateAccountINT 1 2 1 3 2 2 0.11

10 ViewUpdateMemINT 1 3 1 3 2 2 0.11

11 CheckShortage 2 3 1 2 2 1 0.17

12 AccountCreation 2 3 1 2 2 1 0.21

13 Login 3 2 3 1 2 1 0.23

14 TZDeviceManagement 2 3 6 3 4 4 0.33

15 DoAttendance 2 3 1 2 3 1 0.17

16 SelectSubject 6 2 5 1 2 2 0.15

Proc. of the Second Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering -- CEEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6260-5 doi:10.3850/ 978-981-07-6260-5_17

80

Table 2. Individual Components Security Indicators

Table 3. Overall FASS Security Indicators

17 GetMember 7 2 7 1 1 2 0.15

18 ViewUpdateMember 3 3 2 2 2 2 0.20

19 DeleteMember 2 3 1 2 2 2 0.21

20 CourseManagement 2 3 1 2 3 2 0.23

21 Registration 2 3 1 3 3 2 0.19

22 CheckRegistration 2 3 1 3 2 2 0.15

23 FscanAttendance 1 4 1 4 2 1 0.35

24 DBaseMgmt 14 1 24 1 3 5 0.43

C. No Component Name Dependency Availability Confidentiality Integrity

1 ShortageCheckINT 0.25 0.210526316 0.6 0.333333

2 DoAttendanceINT 0.2 0.169491525 0.4 0.125

3 ViewUpdateMemINT
0.25 0.209205021 0.2 0.083333

4 DeleteMemINT 0.25 0.208768267 0.272727273 0.111111

5 AddUpdateDelSubINT 0.25 0.207900208 0.3 0.166666

6 RegisterUserINT 0.2 0.16 0.285714286 0.083333

7 FingerPrintScanner 0.111111111 0.03990423 0.076923077 0.333333

8 LoginINT 0.333333333 0.273224044 0.333333333 0.25

9 CreateAccountINT
0.25 0.205338809 0.375 0.166666

10 ViewUpdateMemINT 0.25 0.209205021 0.272727273 0.111111

11 CheckShortage 0.333333333 0.279329609 0.5 0.5

12 AccountCreation 0.333333333 0.273224044 0.333333333 0.25

13 Login 0.25 0.155520995 0.052631579 1

14 TZDeviceManagement 0.111111111 0.03990423 0.019230769 0.083333

15 DoAttendance
0.333333333 0.279329609 0.4 0.5

16 SelectSubject 0.166666667 0.095877277 0.019230769 0.5

17 GetMember 0.125 0.069300069 0.019607843 0.5

18 ViewUpdateMember 0.25 0.151975684 0.166666667 0.25

19 DeleteMember 0.333333333 0.279329609 0.333333333 0.25

20 CourseManagement 0.333333333 0.279329609 0.285714286 0.25

21 Registration
0.25 0.197628458 0.333333333 0.166666

22 CheckRegistration 0.25 0.197628458 0.375 0.166666

23 FscanAttendance 0.2 0.161030596 0.666666667 0.25

24 DBaseMgmt 0.04 0.020648358 0.000577034 0.2

Security Attributes Dependency
Availability Confidentiality Integrity

Overall Security Indicators
0.2355

0.1822

0.2759

0.2762

Proc. of the Second Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering -- CEEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6260-5 doi:10.3850/ 978-981-07-6260-5_17

81

V. Conclusion
The main aim of the purposed security evaluation framework
and derived metrics is to provide the early indicators of the
security especially at the design and architectural phase of
system life cycle. Such indicators enables the developers to
take necessary decisions and to provide the necessary
protection mechanisms if required. The proposed framework
is flexible enough to be applied on existing developed
system, which requires a reverse engineering process to get
to the design and architecture of the system. In future we are
looking forward to the formalism of the proposed framework
and to include the other security attributes into
consideration and to carry out a large scale experiment in
order to check the feasibility of the framework.

References
[1]. Mir, Irshad Ahmad, and S. M. K. Quadri. "Analysis and

Evaluating Security of Component-Based Software
Development: A Security Metrics Framework."
International Journal of Computer Network and
Information Security (IJCNIS) 4.11 (2012): 21.

[2]. Brown, Alan, Simon Johnston, and Kevin Kelly. "Using
service-oriented architecture and component-based
development to build web service applications." Rational
Software Corporation (2002).

[3]. C. Szyperski. Component Software: Beyond Object-
Oriented Programming. Addison-Wesley, 1998.

[4]. Kung-Kiu Lau and Zheng Wang. Software component
models. IEEE Transactions on Software Engineering,
33(10), October 2007, pp. 709-724.

[5]. B. Christiansson, Christiansson, Benneth, Lars
Jakobsson, and IvicaCrnkovic. "CBD Processs." (2002).

[6]. Here we have some ideas similar to the idea in this draft,
the difference is that we will construct dependency
matrix, they construct component coupling graph.
http://www.cis.ohiostate.du/weide/sce/miscellaneous/CC
Ds.pdf

[7]. B. Li, Managing Dependencies in Component-Based
Systems Based on Matrix Model‖ Proc. of
Net.ObjectDays Conf., pp.22-25, 2003.

[8]. Rosen, Kenneth H., Discrete Mathematics and its
Applications, Third Edition, McGraw-Hill, Inc, 1994.

[9]. I. Crnkovic, B. Hnich, T. Jonsson and Z. Kiziltan,
"Specification, implementation, and deployment of
components," Communication of ACM, vol.45, 2002,
pp. 35-40.

[10]. C. Szyperski, Component Software: Beyond Object
Oriented Programming, Second Editioned, Addison
Wesley, New York, 2002.

[11]. M. Abdellatief , Component-Based Software System
Dependency Metrics based on Component Information
Flow Measurement‖, The Sixth International
Conference on Software Engineering Advances, ISBN:
978-1-61208-165-6 ICSEA 2011.1

[12]. Blom, Martin. Empirical Evaluations of Semantic
Aspects in Software Development. Diss. Karlstad
University, 2006.

Irshad Ahmad Mir is a PhD Research
scholar in the department of Computer
Sciences university of Kashmir, India. He
has completed his bachelors (B.C.A) and
masters (M.C.A) degrees in computer
applications from the University of
Kashmir.

Prof. S.M.K Quadri is presently the Head
department of Computer Sciences
University of Kashmir. He got his M.Tech
from the Indian School of MinesDhanbad,
and PhD from University of Kashmir,
India

“Measurement is the first step that leads to control and

eventually to improvement. If you can’t measure

something, you can’t understand it. If you can’t understand

it, you can’t control it. If you can’t control it, you can’t

improve it.”

Proc. of the Second Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering -- CEEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6260-5 doi:10.3850/ 978-981-07-6260-5_17

