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Abstract— Present study deals the development of data 
fusion based artificial intelligence unit for the chemical sensor 
array based electronic nose (E-Nose) system. We focus 
particularly on feature level fusion of model surface acoustic 
wave (SAW) sensor array response for chemical class 
identification of volatile organic compounds (VOCs). Three 
methods are used for feature extraction namely: principal 
component analysis (PCA); independent component analysis 
(ICA) and kernel principal component analysis (KPCA). Fused 
features are generated with three unsupervised fusion schemes 
and validated in combination with support vector machine 
(SVM) classifier. Study is concluded by the analysis of 12 model 
SAW sensor array data sets. It suggests that amongst the three 
feature fusion schemes; feature fusion by summation result 
highest class recognition rate of VOCs.  

Keywords—data fusion, saw sensor, electronic nose, chemical 
class recognition 

I.  0BIntroduction  
A set of chemical sensors of varied selectivity in 

combination with the artificial intelligence methods is 
popularly known as electronic nose (E-Nose). It is used for the 
recognition of volatile organic compounds (VOCs) in 
monitoring of food quality, environment, health, and safety to 
security applications [1]. Surface acoustic wave (SAW) 
oscillator coated with chemoselective polymer is a well 
recognised chemical sensor used in E-Nose system [2]. Most 
of the limitations of present E-Nose system can be minimized 
by the optimization of sensor array and artificial intelligence 
system (sensor array information processing unit for chemical 
vapor class recognition or concentration estimation). The 
development of an efficient and reliable artificial intelligence 
unit is the most limiting aspects of E-Nose [1]. With the 
increase in the complexity of the sensing environment 
information collected by using a single pattern recognition 
method at each steps of artificial intelligence unit may not be 
sufficient and results in low recognition efficiency of E-Nose. 
Data fusion approach overcomes this limitation by integrating 
the information extracted by various pattern recognition 
methods [3−5]. The architecture and procedure selection for 
data fusion strategy are the domain specific. It is also an open 
research issue in present E-Nose system [3]. 

Three major structures of data fusion are reported in 
literature namely; pre-processing, feature and decision level 
fusion [3]. In data level fusion raw data set is preprocessed 

using different preprocessing methods and then fused into a 
new single raw data set. In feature level fusion numerous 
feature extraction methods are used to generate the diverse 
feature vectors in different feature spaces, thereafter fused 
together to obtain noble feature vectors. In decision level 
fusion data set is processed with independent classifiers after 
that a common decision is made by fusion of decision of each 
of the individual classifiers. Initially data fusion methods have 
been developed for the military applications like target and 
threat recognition, remote sensing, battlefield surveillance etc. 
[6] However at the present these methods have also been 
widely used in image processing, face recognition, speech 
processing, video classification and retrieval, gene detection 
and E-Nose etc [7−12]. 

The application of data fusion in E-Nose domain is 
reported in some of the earlier studies [8−11]. Dutta et al. [8] 
have used data level fusion in tin oxide sensor array. In 
another study Natale et al. [9] have presented data level fusion 
of two varieties of sensors (tin oxide and QCM). Li et al. [10] 
have reported feature and decision level fusion; a similar 
approach is presented by L. Rong et al. for wine classification 
in [11].  

The intention of present study is to achieve the optimum 
performance E-Nose system intelligence by fusing the 
information from multiple feature extraction methods using 
simpler approaches. Feature level fusion reduces the 
commensurate requirement of data level fusion. It also results 
additional information gain as compared to decision level 
fusion. This study focuses on feature level data fusion for 
chemical class recognition of VOCs by analyzing model SAW 
sensor array response. The feature vectors are generated with 
three unsupervised feature extraction methods including PCA, 
KPCA and ICA. These feature vectors are concatenated for 
fusion by three simple approaches namely: fusion by features 
summation; features multiplication and features combination. 
Efficacy of fused feature vectors is validated by using support 
vector machine (SVM) classifier for class recognition of 
VOCs. Study is concluded by analyzing 12 sets of SAW 
sensor array response generated by using SAW sensor model 
simulation. Rest part of the paper is organized as follows. 
Detail description of data sets, preprocessing methods, feature 
extraction methods, feature fusion schemes and classification 
method are presented in section II. Section III covers the 
analysis outcomes of data sets. Section IV presents the 
discussion of research findings and finally the conclusion of 
study is summarized in section V. 
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II. 1BData and Processing Methods 

A. 5BData Sets 
Data sets are generated by simulation using the model of 

SAW sensor; combined with different intensity of additive 
noise and outliers. Each of the data set is based on response of 
11-element SAW sensor array (functionalized with different 
polymers) for 180 chemical vapor samples belonging to six 
chemical classes. The chemical vapor sample belongs to 
chemical classes: trinitrotoluene (TNT); dinitrotoluene (DNT); 
dimethyl methylphosphonate (DMMP); water; toluene and 
benzene. Sensor array response is computed at 30 different 
vapor concentration (varies in between ppth (parts per 
thousands) − ppt (parts per trillion)) of each chemicals. A 
summary of data sets is presented in Table 1. The basic 
distinction amongst the data sets is in the value of noise and 
outliers incorporated in it. For instance the data set-IV 
contains additive Gaussian noise with mean value Hz 0  and 
standard deviation Hz 200 , whereas the data set-V includes 
Gaussian noise with random mean value in 
between Hz 50 -    toHz 50   and standard deviation  Hz 50 .More 
details about the sensor array response generation by 
simulation can be seen in our earlier study [13]. 

TABLE I.  SAW MODEL SIMULATED DATA SETS USED IN ANALYSIS 

Data 
sets 

Noise level Data sets 
(Mean value and Standard 
deviation in Hz) 

Outlier level in Data sets 
(Mean value in Hz, 
Probability of Outlier 
Addition in %) 

I 0, 50 0, 0 

II 0, 100 0, 0 

III 0, 150 0, 0 

IV 0, 200 0, 0 

V Between +50 to –50, 50 0, 0 

VI Between +50 to –50, 100 0, 0 

VII Between +50 to –50, 150 0, 0 

VIII Between +50 to –50, 200 0, 0 

IX 0, 10 Between +50 to –50, 75  

X 0, 10 Between +50 to –50, 80  

XI 0, 10 Between +50 to –50, 85  

XII 0, 10 Between +50 to –50, 85  

 

B. 6BData Preprocessing  
SAW sensor array response is defined as ijf (change in 

frequency of j-th sensor due to exposure of i-th vapor sample). 
A schematic diagram for processing the sensor array response 
is given in Fig.1. Preprocessing is completed in three steps. 
This includes first normalization with respect to frequency 

shift j
pf  due to polymer coating, second logarithmic scaling 

as suggested in our earlier studies [14, 15] and finally 
dimension autoscaling described in [16].  

 

Figure 1.  Flow chart of sensor array response processing. 

C. 7BFeature Extraction  
Three feature extraction methods: principal component 

analysis (PCA); independent component analysis (ICA), and 
kernel principal component analysis (KPCA) have been used 
in feature extraction analysis. PCA is a linear unsupervised 
feature extraction method. It transforms correlated sensor 
array response in measurement space into uncorrelated 
principal component (PC) space. KPCA is a nonlinear 
unsupervised feature extraction method. It maps sensor array 
response from measurement space into high dimensional space 
(H-space) by using some nonlinear kernel function. Thereafter 
linear PCA is implemented on covariance matrix in H-space 
for feature vector generation. ICA is a linear unsupervised 
feature extraction method. It finds out orthogonal directions 
for feature extraction along which the projected sensors 
response has minimum correlation as well as the statistical 
dependency. ICA is reported for sensor array signal 
preprocessing in a most recent study [17]. The detail 
mathematical description of three discussed feature extraction 
methods can be found in [18, 19]. ‗Stats‘ package [20], 
‗Kernlab‘ package [21] and ‗Fast ICA‘ package [22] available 
in open source statistical computing language ‗R‘ are used for 
the implementation of PCA, KPCA and ICA methods 
respectively. 

D. 8BFeature Fusion  
Let  nRRRRR ,........,, 321  be the response vector of any 

chemical vapor from n-element SAW sensor array. Each of the 
response vectors are projected into PCA, KPCA and ICA 
spaces. After feature extraction by the three methods 
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For feature vector fusion three fusion rules have been 
implemented inspired from the study presented in [12, 23] as: 
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b. Feature vector multiplication 
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c. Feature vector combination 
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We hardly found these fusion rules in E-Nose data 
processing. The dimension of each of the data set is 11. After 
feature extraction we selected only first three dimensions. 
Thus feature vectors generated by three above mentioned 
fusion rules have also only three dimensions. It will also help 
in reducing the computation time of analysis as well as in 
comparative analysis amongst the three fusion schemes.  

E. 9BClassification  
In present study Support vector machine (SVM) method is 

employed by using the ‗e1071‘ package [24] in ‗R‘ for class 
identification of chemical vapor by using the chemical feature 
vectors as input. This method is introduced by Vapnik [25] 
and summarized in review [26]. In binary class recognition 
problem, the method builds an optimal separating hyperplane 
using the training feature vectors. The hyperplane maximizes 
the interclass margin by using the quadratic programming 
(QP) optimization technique. The training feature vector close 
to hyperplane are used to measure the interclass margin and 
known as support vector. For multiclass identification, training 
feature vectors are divided into combinations of several binary 
classes and SVM model is trained with each. In validation the 
test feature vectors are classified with binary class trained 
SVM models. The final decision for the class of an unknown 
feature sample is made on the basis of majority voting of the 
binary class models.  

III. 2BAnalysis Outcomes 
Each of the data sets is processed according to the analysis 

flow chart shown in Fig.1. The data sets are preprocessed 
using the methods discussed in section II B. Next, feature 
vectors are generated using the three unsupervised feature 
extraction methods: PCA; ICA and KPCA analyzing each of 
the data set independently. After feature extraction with PCA, 
ICA and KPCA we have selected only three features. That is 
the dimensionality of data set is reduced from 11→3 in feature 
space. In fusion only 3–dimensional feature vectors from each 
of the three features space is used. The fused feature vectors 
are computed by experimenting with three suggested fusion 
schemes discussed in II D. This result 3−dimensional fused 
feature vectors. To check the chemical class recognition 
ability of single as well as fused feature vectors, SVM 
classifier is employed. Each of the data sets whether in single 
and fused feature space is divided first into training and test 
sets. 2/3rd of feature vectors (120 samples) are used in training 
of SVM classifier and remaining 1/3rd (60 samples) are used 
for its validation. Correct class recognition rate by the SVM 
classifier for all the 12 data sets in both the single and fused 
feature space is summarized in Table 2. 

IV. 3BDiscussion 
Two main varieties of reported data fusion rules are: 1) 

unsupervised rules (sum, product, minimum and maximum) 
and ii) supervised rules (SVM, bagging and boosting) [32]. 
Present study implements only unsupervised fusion rules since 
they can be easily executed without training. The summary of 
SVM classification results for all the 12 data set are presented 
in Table 2. Each digit in Table 2 represents the correct class 
recognition rate in validation phase of the SVM classifier 
using the features in single and fused feature spaces.  

TABLE II.  SVM CLASSIFICATION RESULTS IN SINGLE AND FUSED 
FEATURE SPACES. 

 

It is evident from the Table 2 that the class recognition 
capability of feature vector both in single and fused feature 
space decreases from data sets-I–XII. This is reasonable since 
as going from the data sets-I–XII the level of noise and 
outliers incorporated in data sets increases. Also amongst the 
three kinds of feature vectors in single feature space, the 
performance of PCA features is better as compare to ICA and 
KPCA features. Amongst the three fused features the additive 
features result average correct classification rate more than the 
90% except for the data sets XI and XII. Since these two data 
sets have additional amount of noise and outlier. The feature 
vectors generated by multiplication have poor class 
recognition capability with an average class recognition rate 
approximately 50%. Its performance looks equivalent to the 
KPCA feature vectors in single feature space. The feature 
generated by the combination performs equally well as 
additive features in case of less noisy data sets but as the noise 
level in data sets increases its performance decreases (see the 
results of data sets-I–IV and data sets-V–XII in Table 2). 

Again if we compare the class identification capability of 
PCA in single feature space and additive feature vectors in 
fused feature space; additive feature vectors looks to have 

Data 
Sets 

True class recognition rate in % by SVM classifier using  

Single features by Fused features By 

KPCA ICA PCA Multiplication Combination  Addition 

I 58.3 78.3 91.7 53.3 91.7 93.3 

II 48.3 58.3 88.3 53.3 93.3 93.3 

III 53.3 71.7 86.7 43.3 70.0 98.3 

IV 46.7 66.7 81.7 45.0 90.0 91.7 

V 53.3 63.3 81.7 35.0 75.0 86.7 

VI 53.3 46.7 86.7 45.0 63.3 81.7 

VII 55.0 58.3 86.7 33.3 76.7 86.7 

VIII 33.3 55.7 51.7 36.7 66.7 78.3 

IX 53.3 71.7 88.3 60.0 95.0 91.7 

X 63.3 66.7 88.3 58.3 76.7 95.0 

XI 53.3 21.7 43.3 38.3 63.3 61.7 

XII 48.3 25.0 56.7 38.3 56.7 71.7 
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better recognition capability. Finally it can be concluded from 
Table 2 that the additive features generated by summation 
have the best class identification capability in combination 
with SVM classifier in fused space. 

This is due to the additive Gaussian nature of noise 
included in each of the data set and its elimination by feature 
extraction method and feature fusion. The effect of noise is 
suppressed by each of the feature extraction methods 
independently when dimensionality is reduced. The effect of 
noise is further reduced in the features generated by the 
summation (since the residual noise is just added) as compare 
to the features generated by the multiplication (the residual 
noise is multiplied). This may be the possible explanation for 
better performance of additive features compare to the 
multiplicative features. Also the features generated by 
combination have the higher noise level as compare to the 
additive features and lower noise level as compare to the 
multiplicative features. Since in combination the residual noise 
is get combined with each of the feature dimensions. Thus the 
features generated by the combination have better chemical 
class recognition efficiency than the features generated by the 
multiplication and poor efficiency than the features generated 
by summation. 

V. 4BConclusion 
The present study explores elementary feature fusion 

approaches for chemical vapor class recognition based on 
response analysis of model SAW sensor array in combination 
with SVM classifier. Analysis outcomes represents that the 
chemical vapor recognition efficiency of SAW sensor array 
based E-Nose can be enhanced by using the fused feature 
vectors. Feature fusion by addition is found to be an effective 
fusion approach. It groups the discriminating information of 
chemical vapor from different feature spaces by eliminating 
the noise.  
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