
263

A Multi-round Algorithm for Minimum Processor in
Real-time Divisible Load Scheduling

Pegah Razmara

Faculty of Computing Universiti Teknologi Malaysia
 Johor, Malaysia

pegah.razmara@gmail.com
Suriayati Chuprat

Advanced Informatics School (UTM AIS) Universiti
Teknologi Malaysia International Campus

Kuala Lumpur, Malaysia
suria@ic.utm.my

Mimi Liza Abdul Majid

Faculty of Computing Universiti Teknologi Malaysia
 Johor, Malaysia

mimiliza3@gmail.com
Iza'in Nurfateha Ruzan

Faculty of Computing Universiti Teknologi Malaysia
 Johor, Malaysia

aienruzan@gmail.co

Abstract— Using of parallel and distributed system has become
more common. Dividing data is one of the big challenges in this
type of systems. Divisible Load Theory (DLT) is one of the
proposed methods for scheduling data in parallel and distributed
systems. Recent research has applied divisible load theory in real-
time scheduling and has been introduced as an alternative for
multiprocessor scheduling.There are two type of scheduling
algorithm in real-time divisible load theory(RT-DLT) which is
known as single-round and multi-round algorithm. Most studies
in this field are about distributing data in single-round algorithm.
Unfortunately, multi-round algorithms are difficult to analyze
and have received only limited attention in real-time concept. In
this paper, we will determine the minimum number of processors
needed to complete the job by its deadline in multi-round
algorithm. The two algorithms are compared on linear
programming based formulation and result show that multi-
round algorithm can provide a significant improvement on
minimum number of processor needed in comparison with single-
round algorithm.

Keywords: Real-time Scheduling, Divisible Load Theory, Linear
Programming, Single-round algorithm, Multi-round Algorithm

I. Introduction
Divisible Load Theory (DLT) studies a new model of
distributed systems. It assumes that each partition of the
computations is small, and there are no dependencies between
the each part of computations. Therefore, the workload can be
divided into different parts arbitrarily, and these parts can be
executed independently in parallel. The sizes of the load parts
should be adjusted to the speeds of computation and
communication that causes task execution finishes in the
shortest possible time[1].
In other words, DLT seeks optimal strategies to split divisible
loads into chunks/ fractions and send them to the processing
nodes with the goal of minimizing the overall processing
resources and completion time.
These days, many researches were done in DLT theory with
different concept in cluster-based research computing
facilities[2-4] There are two methods for distributing of this
kind of load fractions data among processors. First method is

sending assigned data to each worker's in one-step (single
round). Second, one is sending processor's assigned data in
multi parts (multiple rounds).
Different researches were done in single-round DLT strategy
[5, 6] by some assumptions. One round system with blocking
and non-blocking mode communication [7], system with
different processor available time (SDPAT) [8], non-dedicated
systems [9], and others are some examples of the single-round
investigated models.
Single round strategy is easy to implement but it gives rise to
significant idle time for almost all processors due to a
processor can start computing only after receiving the entire
load fraction assigning to it. In other words, if the application
is data intensive, the processors may face long idle times while
waiting for data transmission[10]. Furthermore, this long idle
time causes to increase execution time and number of
processing nodes.
One way to reduce this idle time is to send the load fraction in
more than one round. Therefore, that processor can begin its
computation earlier in time. In other word, multi-round
strategy reduces the general idle time of the processors at the
end of the load distribution by subdividing the data fractions
more and recurring distributing them [10, 11].This strategy is
more difficult to implement than single one since the root
processor has to perform a large number of operation to
prepare the data for transmission but it cause considerable
improvement in time performance. Also when we have limited
in resource ,memory or buffer size and the data file to be
processed is very large[11]. However, these works only
consider a single task and for online scheduling of multiple
tasks, it could be more challenging [5]. Moreover, deciding the
proper number of processors is one significant challenge in
multi-round strategy.
Recent research[12,13] obtained exact solutions to the
problem of determining the proper number of processors that
must be assigned to a job upon multiprocessor platforms, but it
is not in real-time concept. In other words, they did not
consider deadline in their solution. Therefore, in this paper we
proposed another linear programming (LP) approach to
determine the proper number of processors according to meet
deadline in real-time multi-round algorithm.

Proc. of the Intl. Conf. on Recent Trends In Computing and Communication Engineering -- RTCCE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6184-4 doi:10.3850/ 978-981-07-6184-4_58

mailto:pegah.razmara@gmail.com
mailto:suria@ic.utm.my
mailto:mimiliza3@gmail.com

264

This paper is organized as follows. In the next section, we
present task model and system model. In Section III, a
proposed method is presented which includes closed-form
formula for finding the proper number of processors. In
section IV, simulation result of our algorithm is discussed.
Finally, section V gives the conclusions.

II. Task and system model

In this section, we describe task and system model in real-time
divisible load theory, which is used in this research. In this
method, we used client-server topology for network which all

processors are connected to a head processor and the head
processor only schedule tasks and distribute chunks among
workers and does not participate in computation.

In other words, the role of head node is accept or reject
incoming jobs and execute the scheduling algorithm .This
model includes of homogeneous environment, which means
that all processing nodes have the same computational
capacity and all links from head processor to workers have
same bandwidth. This system does not have communication
and computation over heads.

Moreover, it is assumed that data transmission does not
happen in parallel. It means that head processor may be
sending data to at most one worker at any time instant.
However, in different processing nodes computation may
accrue in parallel. Also, the head processors and workers are
preemptive : the head processor completes the scheduling one
job before considering the next job, and each workers
complete computing one chunk of job before moving on to the
other chunk of job that may have been assigned to it [14-16].

In RT-DLT each job is identified by a 3-tuple ()

where >0 is job arrival time, >0 is total data size of the

job, and >0 is job relative deadline.

Table 1. Notations

Notation Description

 Total size of data

V Total size of each round
n Number of processors
m Number of rounds

 Job arrival time

 Job deadline

 Time between current instant and deadline

 Communication time

 Computation time

 Workload fraction

 Ready time which is available time for each
worker

 Start time for receiving data from head node

III. Proposed method

In this research, we assume that all processors are available at
same time. Under this model of processor availability, it is
known that the completion time of a job on a given set of
processing nodes is minimized if all the processing nodes
complete their execution at the same instant. In other words, if
some processing nodes complete the processing of a given
workload before others then they will face idle time.
Moreover, in this research we assume that the size of all
rounds is equal. If we change the size of rounds and increase
that, the idle time between each round is increased. If we
decrease the round size, data-transferring time to the previous
processor is decreased, but current processing node is busy
since computation time of previous round is large. For a given
job () and given number of processor,
denote the amount of the workload that is assigned to the ith
processing node 1 i n.

The primary idea in this algorithm is according to the first
principles. In this algorithm we started out with no processors
and continually added to them until processing the job finished
(line 8 in the pseudo-code), or we specify that it is not possible
to schedule this job by its deadline (line 9).
In greater detail, we are given the total size of the workload
(), the amount of time between the current instant and the
deadline (), the computation time and communication
time which are cluster parameters, and the ready times for
each processor , ,…, in regular order. The minimum
number of processors needed () have been determined,
the fractions allocated to each processor (the ’s), and the
start time at that each processor will begin receiving data from
the head node (the ’s) .

MINPROCS(σ,∆)

1. read numround;

2. minproc ←0 ;

3. σ ← (σ ÷ numround);

4. ∆ ← (∆ ÷ numround);

5. for round=1 to numround do

6. ← ; sum←0; i←1 ; D ← ∆;

7. while (true) do

8. if (sum ≥ 1) break end if

9. if (≥ D) break end if

10. ← (D −) ÷ (σ × (+))

11. ← max (, + (× σ×))

Proc. of the Intl. Conf. on Recent Trends In Computing and Communication Engineering -- RTCCE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6184-4 doi:10.3850/ 978-981-07-6184-4_58

265

12. sum←sum+

13. i←i+1

 end while

14. if (sum ≥ 1) then success!!

15. minproc ←max(minproc , i)

 else cannot meet the deadline

17. minproc ← ∞

 end if

18. D ← D + ∆;

 end for

Fig. 1. Computing

The pseudo-code uses some additional variables: numround
which is the number of rounds will be used in this algorithm
,sum which is total portion size of the workload that has
already been allocated to each workers, i that point to and
the number of processors and D which is allocated deadline
for each round. The main body of the pseudo-code is for loop
which count the number of rounds and inside of that is an
infinite while loop which the only exist reason is be one of two
break statements. The break in line 8 shows that we have
allocated the whole job to the exact number of processors and
break execute in line 9 means that it is not possible to execute
this job according to meet this deadline. For example, the
number of processors with the different ready time are not
enough to process the job according to meet its deadline.
If neither break statement executes, which is the faction of
the job that is allocated to processor is calculated. The
value is executed by time unit () for receiving data
fraction from the head node and computing this data for
() time unit. In optimal situation, we would like these
processing nodes complete execution at the job deadline like
time-instant D. Due to may only start receiving data at
time-instant , we need to + + = D and we
calculate value of in line 10.
Once computed the allocated fraction , we can calculate
the time at which may start execution. This time is the
later of ready time and the time at that has received
data. Moreover the head-node is able to transmit the data
fraction to . This computation of is done in line 11.
Moreover, Lines 12 and 13 update the total values of the
workload portion that already has been allocated, and the
processor index, which is considered next. To determine the
final number of processor in algorithm we should select
maximum of them in each round, which is done in line 15.
Furthermore, deadline increase in each round in line 18.

IV. Simulation results
In this section we have presented our simulation experiments
and displayed some of our result and compare that with single-
round algorithm in the same condition. Our experiment were

performed in MATLAB and using linear-programming
solving which is available with MATLAB to solve our LPs.
The outcomes of our experiments are plotted in Figure 2. For
greater detail, we also present the results data in Table 2.
The graph in Figure 2 plot the minimum number of processors
() required to complete a given real-time workload by its
allocated deadline, when this minimum number of processors
is computed by our multi-round algorithm (depicted in the
graphs by red line) and when it is computed by the single-
round algorithm [17] (depicted in the graphs by blue line). As
can be seen in the graphs, typically the performance of our
algorithm is better than single-round algorithm performance
[17].

Fig. 2. Evaluation of produced with increasing data size and cluster
of n=16 processors.

 The graphs in Figure 2 calculate the respective performance
of the two algorithms since the size of the workload is
increased, for 16 processors in cluster platform relatively. The
performance enhancement is presented to be insignificant or
very small for loads with small size; but when the load size
increases, the performance penalty rewarded by the single-
round algorithm[14, 17] becomes more considerable.
For better detail, we presented the minimum number of
processors generated by both algorithms in Table 2.

Proc. of the Intl. Conf. on Recent Trends In Computing and Communication Engineering -- RTCCE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6184-4 doi:10.3850/ 978-981-07-6184-4_58

266

Table 2. evaluation of produced with increasing datasize and a cluster of

n=16 processors.

The advanced conclusion to be drawn from these experiments
are that the previous single-round algorithm [17] is acceptable
upon clusters in which workloads size are small and/or have
large relative deadlines . In other words, for large size
workloads according to our finding, single-round algorithm
will not be able to execute the job and optimal multi-round
algorithm performs significantly better.

V. Conclusion
In this paper, we have studied scheduling problems in RT-
DLT. Moreover, some of fundamental characteristic in two
models of divisible load scheduling, single-round and multi-
round are presented. In addition, we proposed a multi-round
algorithm that efficiently determines the minimum number of
processors which are required to meet a job deadline and
significantly decrease the number of processor in comparison
with single-round algorithm in the same situation. In other
word, through experimental evaluation, we have shown that
this efficient algorithm significantly improves on the heuristic
approximations proposed in single-round algorithm. As we
mentioned above, designing multi-round algorithms in real-
time concept is complex and less results are available in
literature. In this paper we found a solution for one of them.
There are two other significant challenges in multi round
strategy which are proper number of rounds and scheduling
the last round which in the future research we will be work on
them.

Refrences

 [1] M. Lawenda, "Multi-installment divisible loads scheduling,"

university of technology, 2006.

[2] A. Mamat, Y. Lu, J. Deogun, and S. Goddard, "Scheduling real-
time divisible loads with advance reservations," Real-Time
Systems, pp. 1-30, 2012.

[3] A. Mamat, Y. Lu, J. Deogun, and S. Goddard, "Efficient real-time
divisible load scheduling," Journal of Parallel and Distributed
Computing, 2012.

[4] A. Mamat, Y. Lu, J. Deogun, and S. Goddard, "An efficient
algorithm for real-time divisible load scheduling," in Real-Time
and Embedded Technology and Applications Symposium (RTAS),
2010 16th IEEE, 2010, pp. 323-332.

[5] T. G. Robertazzi, "Ten reasons to use divisible load theory,"
Computer, vol. 36, pp. 63-68, 2003.

[6] A. Shokripour and M. Othman, "Categorizing researches about
DLT in Ten groups," in Computer Science and Information
Technology-Spring Conference, 2009. IACSITSC'09. International
Association of, 2009, pp. 45-49.

[7] O. Beaumont, A. Legrand, and Y. Robert, "Optimal algorithms for
scheduling divisible workloads on heterogeneous systems," in
Parallel and Distributed Processing Symposium, 2003.
Proceedings. International, 2003, p. 14 pp.

[8] A. Shokripour, M. Othman, and H. Ibrahim, "A new algorithm for
divisible load scheduling with different processor available times,"
Intelligent Information and Database Systems, pp. 221-230, 2010.

[9] A. Shokripour, M. Othman, H. Ibrahim, and S. Subramaniam, "A
new method for job scheduling in a non-dedicated heterogeneous
system," Procedia Computer Science, vol. 3, pp. 271-275, 2011.

[10] V. Bharadwaj, D. Ghose, V. Mani, and T. G. Robertazzi,
Scheduling divisible loads in parallel and distributed systems vol.
8: Wiley-IEEE Computer Society Press, 1996.

[11] V. Bharadwaj, D. Ghose, and T. G. Robertazzi, "Divisible load
theory: A new paradigm for load scheduling in distributed
systems," Cluster Computing, vol. 6, pp. 7-17, 2003.

[12] A. Shokripour, M. Othman, H. Ibrahim, and S. Subramaniam, "A
method for scheduling heterogeneous multi-installment systems,"
Intelligent Information and Database Systems, pp. 31-41, 2011.

[13] A. Shokripour, M. Othman, H. Ibrahim, and S. Subramaniam,
"New method for scheduling heterogeneous multi-installment
systems," Future Generation Computer Systems, 2012.

[14] X. Lin, Y. Lu, J. Deogun, and S. Goddard, "Real-time divisible
load scheduling for cluster computing," in Real Time and
Embedded Technology and Applications Symposium, 2007.
RTAS'07. 13th IEEE, 2007, pp. 303-314.

[15] X. Lin, Y. Lu, J. Deogun, and S. Goddard, "Enhanced real-time
divisible load scheduling with different processor available times,"
High Performance Computing–HiPC 2007, pp. 308-319, 2007.

[16] X. Lin, Y. Lu, J. Deogun, and S. Goddard, "Real-time divisible
load scheduling with different processor available times," in
Parallel Processing, 2007. ICPP 2007. International Conference
on, 2007, pp. 20-20.

[17] S. Chuprat and S. Baruah, "Scheduling divisible real-time loads on
clusters with varying processor start times," in Embedded and
Real-Time Computing Systems and Applications, 2008. RTCSA'08.
14th IEEE International Conference on, 2008, pp. 15-24.

Proc. of the Intl. Conf. on Recent Trends In Computing and Communication Engineering -- RTCCE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6184-4 doi:10.3850/ 978-981-07-6184-4_58

