
A Novel Approach for Introducing Advanced
Security in Mobile Agents

Rajan Sahota1, Ankur Chauhan2, Priya Suneja3

Abstract -Mobile agents can travel autonomously
through a computer network in order to perform
some computation or gather information on behalf of
a human user or an application. With the concept of
mobile agent, the execution process will go to the
place where the data are available, data will not send
to the place of execution process. However, it has not
become popular due to some problems such as
security, fault tolerance etc. The fact that computers
have complete control over all the programs makes it
very hard to protect mobile agents from untrusted
hosts. So, the issue of protecting a mobile agent from
a malicious host is a more difficult problem than
protect a host from a malicious agent. This paper
proposes advanced security model for the mobile
agent security against malicious hosts by combining
few techniques so that it can provide a better
solution.

Keywords: security, mobile agents, mobile code,
malicious host.

I. INTRODUCTION
Today so many computer networks are

connected to each other and spreading all over the
world, and we can use various distributed computer
resources through the computer networks. However,
when a user tries to use these resources, he has to
understand the location of distributed resources,
predict their current status, and select some suitable
resources. Mobile agent technologies are getting
popular as means for an efficient way to access to
remote resources on computer networks. Mobile
agents, in these technologies, are processes that
migrate from a server to server in the network
autonomously to achieve user’s requests. The user

using mobile agents can get result of request without
any knowledge about the network environment.
Usage of mobile agents also brings in achievement of
load balancing in whole the network by agent
migration [2].

Mobile agents are composed of code, data, and
state. Agents migrate from one host to another taking

the code, data and state with them. The state
information allows the agent to continue execution
from the point where it was before it left in the
previous host [3].

However, one of the main technical obstacles to
a wider acceptance of the mobile agent paradigm is
security. Achieving security is fundamental for the
successful deployment of mobile agent systems,
especially in the electronic commerce area [1].
Sander and Tschudin present two types of security
problems that must be solved [4]. The first is host
protection against hostile agents. The second is agent
protection against hostile hosts. Many techniques
have been developed for the first kind of problem,
such as access control, password protections, and
sand boxes, but the second problem appears to be
difficult to solve. Yee proposed an approach that uses
a secure coprocessor that executes critical
computations and stores critical information in secure
registers [5].

The rest of the paper is organized as follows.
Section 2 deals with various security issues in mobile
agent paradigm, Section 3 deals with the malicious
host problem which can be caused by spying the
code, data or state of the mobile agent by malicious
hosts, Section 4 gives an overview of the main
solutions for keeping a mobile agent secure against
malicious hosts such as code obfuscation, partial
result encapsulation etc. Section 5 gives architecture
of novel approach; Section 6 gives experimentation
and results. Finally Section 7 gives conclusions and
future work.

II. SECURITY ISSUES IN MOBILE AGENT

PARADIGM
Different security requirements that the mobile agent
paradigm needs to satisfy [22]:
a) Confidentiality

It is important to ensure that the information
carried by a mobile agent or stored on a platform is
accessible only to authorized parties. This is also the
case for the communication among mobile agent
paradigm components.

Proc. of the Intl. Conf. on Recent Trends In Computing and Communication Engineering -- RTCCE 2013

Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6184-4 doi:10.3850/ 978-981-07-6184-4_44

203

b) Integrity
It is essential to protect the mobile agent's code,

state, and data from being modified by unauthorized
parties. This can be achieved either by preventing or
by detecting unauthorized modifications.
c) Availability

Platforms typically face a huge demand for
services and data. In the case that a platform cannot
meet mobile agents' demands, it should notify them
in advance.
d) Accountability

Platforms need to establish audit logs to keep
track of all visiting mobile agents' actions in order to
keep them accountable for their actions. Audit logs
are also necessary when the platform needs to
recuperate from a security penetration or a system
failure.
e) Anonymity

As mentioned above, platforms need to keep
track of mobile agents' actions for accountability
purposes. However, platforms also have to balance
between their needs for audit logs and mobile agents'
needs to keep their actions private.

III. THE MALICIOUS HOSTS PROBLEM
Malicious host’s problem is a commonly

agreed security issue in the area of agent security. In
the mobile agent paradigm, the hosts have full control
over the mobile agents running in them, which no
longer works for them like that in the traditional
computer system. Some of the attacks that could be
performed by malicious hosts to the mobile agents,
which are totally controlled by them [6]:
a) Spying

Spying focuses on understanding the code, data
and network communication of the mobile agent. It is
called spying attack fast-spying if the environment
has no knowledge of whether the agent has been
spied. Otherwise, it is called tardy-spying.

b) Thieving And Pirating

Based on successful spying, the host could either
steal data (thieving) or pirate code (pirating) from the
agent.
c) Manipulation

Based on successful fast-spying, the host could
modify the code, data, and network communication
of a mobile agent or return wrong system call result
without being known by the agent’s environment.

IV. TECHNIQUES FOR MOBILE AGENT

PROTECTION
For wide scale application, the approaches to protect
an agent can be broadly classified into two main
mechanisms [7]:

 Detection mechanism attempt to detect
unauthorized modification of code, state or
execution of mobile agent.

 Prevention mechanisms try to make it impossible
to access or modify code, state or data in a
manner that is meaningful to the perpetrator.

a) Code Obfuscation
Obfuscation is a technique in which the mobile

code producer enforces the security policy by
applying a behavior-preserving transformation to the
code before it sends it to run on different platforms
that are trusted to various degrees [8,23]. Obfuscation
aims to protect the code from being analyzed and
understood by the host. Consequently, the host
should not be able to modify the mobile code's
behavior or expose sensitive information that is
hidden inside the code such as a secret key, credit
card number, or bidding limits [8].

Typically, the transformation procedure that is
used to generate the obfuscated code aims to make
the obfuscated code very hard to understand or
analyze by malicious parties. There are different
useful obfuscating transformations [17,20,21,24].
Data Obfuscation concentrates on obfuscating the
data and data structures in the code without
modifying the code itself.

Hohl [18] suggested using the Obfuscation
technique to obtain a time limited black box agent
that can be executed safely on a malicious platform
for a certain period of time but not forever. D'Anna et
al [8] pointed out that Obfuscation could delay, but
not prevent the attacks on agent via reverse
engineering. They also argue that an attacker with
enough computational resources, such as enough
time, can always de-obfuscate the code. Barak et al
[19] studied the theoretical limits of Obfuscation
techniques and showed that in general achieving
completely secure.

The main advantages of this technique includes
flexibility and low cost. This technique has number
of drawbacks, in this every transformation introduce
extra cost in memory and computation time necessary
to execute the obfuscate program.

b) Partial Result Encapsulation

Partial Result Encapsulation (PRE) is a detection
technique that aims to discover any possible security
breaches on an agent during its execution at different
platforms. PRE is used to encapsulate the results of
agent execution at each visited platform in its travel
path. The encapsulated information is later used to
verify that the agent was not attacked by a malicious
platform. The verification process can be done when
the agent returns to its home platform or at certain
intermediate points in its itinerary.

Proc. of the Intl. Conf. on Recent Trends In Computing and Communication Engineering -- RTCCE 2013

Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6184-4 doi:10.3850/ 978-981-07-6184-4_43

204

To ensure the confidentiality of its results, the
agent encrypts the results by using the public key of
its originator to produce small pieces of cipher text
that are decrypted later at the agent's home platform
using the corresponding private key. This is one
scenario of PRE where the agent itself does the
encapsulation process. The agent uses a special
implementation of encryption called "Sliding
Encryption" that was suggested by Young and Yung
[9]. Sliding Encryption encrypts small amounts of
data within a larger block and thus obtains small
pieces of cipher text. Sliding Encryption is
particularly suitable for certain application where
storage space is valuable such as smartcards [10].

Yee [15] suggested "Partial Result
Authentication Code" (PRAC), where again the agent
does the encapsulation of the results. However, the
agent's originator also takes part in this scenario by
providing the agent with a list of secret keys before
launching it. For each visited platform in an agent's
itinerary, there is an associated secret key. When an
agent finishes an execution at a certain platform in its
itinerary, it summarizes the results of its execution in
a message for the home platform, which could be
sent either immediately or later. It is important to
note that the agent erases the used secret key of the
current visited platform before its migration to the
next platform. Destroying the secret key ensures the
"forward integrity" of the encapsulation results.
Forward integrity [15] guarantees that no platform to
be visited in the future is able to modify any results
from the previously visited platforms, as there is no
secret key to compute the PRAC for these results.

Karjoth et al [16] proposed a "strong forward
integrity", which, in addition to forward integrity,
also requires that the visited platform cannot later
modify its own results. Karjoth et al's approach
depends on the visited platform doing the
encapsulation process instead of the agent doing it.
The visited platform encrypts the agent's results by
using the originator's public key to ensure the
confidentiality of the results [16].

The PRAC technique has a number of
limitations. The most serious occurs when a
malicious platform retains copies of the original keys
or key generating functions of an agent. If the agent
revisits the platform or visits another platform
conspiring with it, a previous partial result entry or
series of entries could be modified without the
possibility of detection.

c) Execution Tracing

Execution tracing [11] is a technique for
detecting unauthorized modifications of an agent
through the faithful recording of the agent's behavior
during its execution on each agent platform. The

technique requires each platform involved to create
and retain a non repudiatable log or trace of the
operations performed by the agent while resident
there, and to submit a cryptographic hash of the trace
upon conclusion as a trace summary or fingerprint. A
trace is composed of a sequence of statement
identifiers and platform signature information. The
signature of the platform is needed only for those
instructions that depend on interactions with the
computational environment maintained by the
platform. For instructions that rely only on the values
of internal variables, a signature is not required and,
therefore, is omitted.

This technique gives all information about path
of code. It helps to analysis the performance of code
in individual host. The approach has a number of
drawbacks, the most obvious being the size and
number of logs to be retained, and the fact that the
detection process is triggered occasionally, based on
suspicious results or other factors.

d) Environmental Key Generation

Environmental Key Generation [12] describes a
scheme for allowing an agent to take predefined
action when some environmental condition is true.
The approach centers on constructing agents in such
a way that upon encountering an environmental
condition (e.g., string match in search), a key is
generated, which is used to unlock some executable
code cryptographically. The environmental condition
is hidden through either a one-way hash or public key
encryption of the environmental trigger.

The technique ensures that a platform or an
observer of the agent cannot uncover the triggering
message or response action by directly reading the
agent’s code.

e) Computing With Encrypted Functions

The goal of Computing with Encrypting
Functions [13] is to determine a method whereby
mobile code can safely compute cryptographic
primitives, such as a digital signature, even though
the code is executed in untrusted computing
environments and operates autonomously without
interactions with the home platform. The approach is
to have the agent platform execute a program
embodying an enciphered function without being
able to discern the original function; the approach
requires differentiation between a function and a
program that implements the function. Essentially,
the problem the author would like to solve is the
following: agent's program computes some function
f, and the host is willing to compute f (x) for the
agent, but the agent wants the host to learn nothing
substantive about f . The protocol presented works in

Proc. of the Intl. Conf. on Recent Trends In Computing and Communication Engineering -- RTCCE 2013

Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6184-4 doi:10.3850/ 978-981-07-6184-4_43

205

the following way, where E is some encryption
function:
 The owner of the agent encrypts f.
 The owner creates a program P(E(f)) which

implements E(f) and puts it in the agent.
 The agent goes to the remote host, where it

computes P(E(f)) (x), and returns home.
 The owner decrypts P(E(f))(x) and obtains f(x).

Strength of security is directly proportional to
strength of encryption function. It is best suitable
technique for application which requires high
security. However this approach has a serious
drawback: no information about the encrypted
computation must leak to the host and only originator
may receive any output.

V. NOVEL APPROACH FOR SECURITY

We are proposing a security model for making

our agent more secure as it is using both the
techniques of cryptography and obfuscation for its
protection. The working of this model is shown in
Fig.1 as flow of agent from host to remote server and
vice-versa. The following are some useful points
which we get from proposed model:

a) If the attacker is able to get the code of the
agent, he will look for the private data which is been
encrypted. So this data is protected as far as he
compromised the secret keys.

b) On obfuscating the whole agent code, it will
make it more difficult for the attacker to understand
the code also obfuscation makes private data look
more ordinary. So, it will take attacker much more
time to crack the agent and its private information.

Fig.1: Architecture of proposed security model

The various steps of proposed model are given
below:

1. The Master agent instantiates the Slave1 and
Slave2 agents.

2. The Slave1 agent’s code is obfuscated using

obfuscator and then dispatched to remote server
for retrieving the secret data from the file stored
on remote server.

3. The Slave1 agent encrypts the secret data using
the encryption algorithm used.

4. Then Slave1 agent returns back to the home with
decrypted data.

5. At home it passes the encrypted information to
the agent Slave2.

6. After getting the message from Slave1 agent,
Slave2 agent decrypts the results back to original
form and starts processing.

VI. EXPERIMENTATION AND RESULTS

The mobile agent system used in this paper is

aglet software development kit (ASDK) 2.0.2. Aglets
software development kit was originally developed at
IBM Tokyo Research Laboratory. When the
installation process is done, we can run the Aglets
server called Tahiti which prompts for login name
and password which we can use default values given
in manual.
Some experimental results are shown below:

a) The execution time on protected agents is 40%
higher than the execution of unprotected agents
on average.

Number of
Host

2 4 8

Encrypted
Agent

17500 32400 46200

Unprotected
Agent

11050 22500 33800

Table 1: Execution time for number of hosts

b) Rate of successful Iterations increases nearly

50% with the help of proposed security model.

No.of
Iterations

2 4 6 8

Protected
Agent

45 57 65 80

Unprotected
Agent

20 30 35 38

Table 2: Successful Iterations in Protected and
unprotected Agents Systems

c) The proposed model increases the size of
program code because it uses both data cryptography

Proc. of the Intl. Conf. on Recent Trends In Computing and Communication Engineering -- RTCCE 2013

Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6184-4 doi:10.3850/ 978-981-07-6184-4_43

206

technique and code obfuscation but the failure rate is
greatly reduced by this proposed model so, we can
neglect that in case of complex applications.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents some of the main issues in
the security of mobile agents against attack from
malicious host. This paper presents the most
important techniques for providing security in mobile
agent systems. We concluded that none of the
existing techniques provides an optimal solution for
all scenarios. However, a combination of various
techniques may yield powerful solutions. So, we
proposed a hybrid security model that revolves
around the security of agent’s code, data and itinerary

from malicious execution environment.
In future, a more advanced cryptographic

technique can be applied, so that the mobile agent’s

data can be made more secure while migrating from
one host to another. This solution addresses most of
the problem but still it is very much dependent on the
complexity of the algorithm used and the possibility
that how soon the professional hacker can de-
obfuscate the program. It still does not address the
problem of denial of service.

REFERENCES

[1] A. Corradi, R. Montanari,” Security Issues in mobile agents

Technology”, IEEE Internet Computing, Vol. 1, 1999.
[2] T. Taka Tadanori, M. Takashi Watanabe,” A Model of

mobile agents Services Enhanced for Resource Restrictions
and Security”, IEEE Internet Computing, 1995.

[3] H. Lee, ”The Use of Encrypted Functions for mobile agent
Security”, Proceedings of the 37th Hawaii International
Conference on System Sciences, 2004.

[4] T. Sander, C. Tschudin, “Protecting mobile agents Against
Malicious Hosts”, In G. Vigna, editor, mobile agent Security,
pages 44–60. Springer Verlag: Heidelberg, 1998.

[5] B. Yee, ”Using Secure Coprocessors”, PhD thesis, Carnegie
Mellon University, 1994.

[6] X. D. Guan, Y. L. Yang, and J. Y. You, “POM - A Security
Model against Malicious Hosts”, DCTC Tech Report, IEEE

Computer Society, Shanghai Jiaotong Univ. Dec. 2000.
[7] N. Karnik, “Security in mobile agent Systems” PhD Thesis,

Department of Computer Science and Engineering,
University of Minnesota, 1998.

[8] L. D'Anna, B. Matt, A. Reisse, T. Van Vleck, S. Schwab, and
P. LeBlanc, "Self- Protecting mobile agents Obfuscation
Report", Network Associates Laboratories, June 2003.

[9] A. Young, M. Yung, "Encryption Tools for mobile agents:
Sliding Encryption," In: E. BIHAM (ed), Fast Software
Encryption, Springer-Verlag, Germany, 1997.

[10] G. Karjoth, J. Posegga, "Mobile agents and Telcos'
Nightmares," Annales des Telecommunications VoL 55,
No. 7/8, 29-41, 2000.

[11] G. Vigna, "Protecting mobile agents Through Tracing,"
Proceedings of the 3rd ECOOP Workshop on Mobile
Object Systems, Jyvalskylä, Finland, June 1997.

[12] J. Riordan, B. Schneier, “Environmental Key Generation

Towards Clueless Agents,” G. Vinga (Ed.), Mobile agents

and Security, Springer-Verlag, Lecture Notes in Computer
Science No. 1419, 1998.

[13] Yan Li, Min Fu, Lina Yu, “E-Commerce Security Model
Construction Based on Mobile Agent”, IEEE International

Conference on Networking and Digital Society, 2010.
[14] V. Roth, "Secure Recording of Itineraries Through

Cooperating Agents," Proceedings of the ECOOP
Workshop on Distributed Object Security and 4th Workshop
on Mobile Object Systems: Secure Internet Mobile
Computations, pp. 147-154, INRIA, France, 1998.

[15] B. Yee, "A Sanctuary for mobile agents," DARPA
Workshop on Foundations for Secure Mobile Code, Feb.
1997.

[16] G. Karjoth, N. Asokan, and C. Glc, "Protecting the
Computation Results of Free- Roaming Agents", Second
International Workshop on mobile agents, Stuttgart,
Germany, Sep. 1998.

[17] G. Wroblewski, "General Method of Program Code
Obfuscation", PhD Dissertation, Wroclaw University of
Technology, Institute of Engineering Cybernetics, 2002.

[18] F. Hohl, "Time Limited Blackbox Security: Protecting
mobile agents from Malicious Hosts," To appear in mobile
agents and Security Book edited by Giovanni Vigna,
published by Springer Verlag 1998.

[19] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A.
Sahai, S. Vadhan, and K. Yang, "On the (Im)possibility of
Obfuscating Programs," in Advances in Cryptology,
Proceedings of Crypto'2001, Lecture Notes in Computer
Science, Vol. 2139, pages 1-18.

[20] G. Hachez, "A Comparative Study of Software Protection
Tools Suited for Ecommerce with Contributions to
Software Watermarking and Smart Cards," Universite
Catholique de Louvain, 2003.

[21] C. Collberg, C. Thomborson, and D. Low, "A taxonomy of
obfuscating transformations," Technical Report 148,
Department of Computer Science, University of Auckland,
July 1997.

[22] W. Jansen, T. Karygiannis, "Mobile agent Security," NIST
Special Publication 800-19, National Institute of Standard
and Technology, 2000.

[23] Wayne A. Jansen, “Countermeasures for Mobile Agent

Security” March 01, 2010.
[24] S. Armoogum, A. Caully,” Obfuscation Techniques for

Mobile Agent code confidentiality”, March 2010.
[25] S. Srivastava, G.C Nandi, ” Detection of Mobile Agent’s

blocking in Secure Layered Architecture”, IEEE
International Conference on Communication Systems and
Network Technologies, 2011.

Proc. of the Intl. Conf. on Recent Trends In Computing and Communication Engineering -- RTCCE 2013

Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6184-4 doi:10.3850/ 978-981-07-6184-4_43

207

