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Abstract—In this paper, we propose a natural framework that al- 
lows any region-based segmentation processed in local way. We 
consider local rather than global image statistics and evolve a 
contour based on local information. Localized contours are 
capable of segmenting objects with heterogeneous feature profiles 
that would be difficult to capture correctly using a standard global 
method. The presented technique is versatile enough to be used 
with any global region-based active contour energy. We describe 
this framework and demonstrate the localization of three well-
known energies in order to illustrate how our framework can be 
applied to any energy. We then compare each localized energy to 
its global counterpart to show the improvements that can be 
achieved. Next, study of the behaviours of these energies in 
response to the degree of localization is given. Finally, we show 
results on challenging images to illustrate the robust and accurate 
segmentations that are possible with this new class of active 
contour models. 

 

Index Terms—Active contours, level set methods, curve evolu- 
tion, image segmentation, partial differential equationsn. 

 
 

      I.  INTRODUCTION 
 

CTIVE contour methods have become very popular in re- 
cent years, and have found applications in a wide range of 

problems including visual tracking and image segmentation; see 
[1]–[4] and the references therein. The basic idea is to allow a 
contour to deform so as to minimize a given energy functional 
in order to produce the desired segmentation; see [5]–[9]. Two 
main categories exist for active contours: edge-based and re- 
gion-based. 

Edge-based active contour models utilize image gradients in 
order to identify object boundaries, e.g., [10], [11]. This type 
of highly localized image information is adequate in some sit- 
uations, but has been found to be very sensitive to image noise 
and highly dependent on initial curve placement. One benefit of 
this type of flow is the fact that no global constraints are placed 
on the image. Thus, the foreground and background can be het- 
erogeneous and a correct segmentation can still be achieved in 
certain cases. 
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More recently, work in active contours has been focused on 
region-based flows inspired by the region-competition work 
of Zhu and Yuille [12]. These approaches model the fore- 
ground and background regions statistically and find an energy 
optimum where the model best fits the image. Some of the 
most well-known and widely used region-based active contour 
models assume the various image regions to be of constant in- 
tensity [13]–[16]. More advanced techniques attempt to model 
regions by known distributions, intensity histograms, texture 
maps, or structure tensors [17]–[20]. 
 

There are many advantages of region-based approaches when 
compared to edge-based methods including robustness against 
initial curve placement and insensitivity to image noise. How- 
ever, techniques that attempt to model regions using global sta- 
tistics are usually not ideal for segmenting heterogeneous ob- 
jects. In cases where the object to be segmented cannot be easily 
distinguished in terms of global statistics, region-based active 
contours may lead to erroneous segmentations. Consider the 
synthetic image in Fig. 1. Here, we see a situation where the 
foreground and background are heterogeneous and share nearly 
the same statistical model. The construction of this image causes 
it to be segmented improperly by a standard region-based algo- 
rithm [13], but correctly by an edge-based algorithm [11]. Het- 
erogeneous objects frequently occur in natural and medical im- 
agery. To accurately segment these objects, a new class of ac- 
tive contour energies should be considered which utilizes local 
information, but also incorporates the benefits of region-based 
techniques. 

 
 
Fig. 1.  Synthetic image of a blob with heterogeneous intensity on a background 
of similar heterogeneous intensity. (a) Initial contour. (b) Unsuccessful result 
of region-based segmentation. (c) Successful result of edge-based segmentation 
technique.[33] 

 
There have been several methods in the literature which are 

relevant to the present work. Paragios and Deriche [21] pre- 
sented a method in which edge-based energies and region-based 
energies were explicitly summed to create a joint energy which 
was then minimized. In [22] and [23], Sum and Cheung take a 
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similar approach and minimize the sum of a global region-based 
energy and a local energy based on image contrast. The idea of 
incorporating localized statistics into a variational framework 
begins with the work of Brox and Cremers [24] who show that 
segmenting with local means is a first order approximation of 
the popular piecewise smooth simplification [25] of the Mum- 
ford-Shah functional [26]. This focus on the piecewise smooth 
model is also presented in several related works as we now de- 
scribe. 

 Piovano et al. [28] focus on fast implementations 
employing convolutions that can be used to compute localized 
statistics quickly and, hence, yield re- sults similar to piecewise-
smooth segmentation in a much more efficient manner. The 
effect of varying scales is noted, but not discussed in detail. 
The work of An et al. [29] also notes the efficiency of 
localized approaches versus full piecewise smooth estimation. 
That work goes on to introduce a way in which lo- calizations 
at two different scales can be combined to allow sen- sitivity to 
both coarse and fine image features. The authors pro- pose a 
similar flow in [30] based on computing geodesic curves in the 
space of localized means rather than an approximating a 
piecewise-smooth model. Lankton et al. also propose the use 
of localized energies in 3-D tensor volumes for the purpose of 
neural fiber bundle segmentation. All of these works focus on a 
localized energy that is based on the piecewise constant model 
of Chan and Vese [13]. 

In the present work, we make three main contributions. First, 
we present a novel framework that can be used to localize any 
region-based energy. Second, we provide a way for localized 
active contours to interact with one another to create   -ary seg- 
mentations. Third, we study in depth the effect of the local- 
ization radius on segmentation results. The localization frame- 
work we present allows any region-based energy to be local- 
ized in a fully variational way. The significant improvement of 
localization within this framework is that objects which have 
heterogeneous statistics can be successfully segmented with lo- 
calized energies when corresponding global energies fail. We 
go on to use the framework to derive three localized energies. 
The first, presented in Section III-A, is similar to those in the 
works mentioned above. Two additional region-based segmen- 
tation energies and their localized counterparts are formulated 
in Sections III-B and III-C. To best of our knowledge localiza- 
tion of energies other than the Chan and Vese energy have never 
been shown. We provide these as examples to demonstrate how 
any energy can be localized in a similar manner. Our key claim 
is that localization in our variational framework can improve the 
segmentations provided by any globally defined energy in cer- 
tain circumstances. We do not suggest that one of the proposed 
localized energies is superior to the others, just that in many 
cases localizing a global energy in the manner suggested in this 
work will improve performance. 

Additionally, because binary segmentation is often insuffi- 
cient for higher-level vision problems, we also include a novel 
method that allows   localized active contours to naturally com- 
pete in an image while segmenting different objects that may or 

may not share borders. This new method extends the work of 
Brox and Weickert [31], so that it can be successfully utilized 
with localized active contours. 

 
We also study the significance of a parameter common to all 

localized statistical models, namely, the degree of localization 
to use. This scale-type parameter has been mentioned by other 
authors, but choosing it correctly is crucial to the success of 
localized energy segmentations. We provide experiments that 
explain its effect and give guidelines to assist in choosing this 
parameter correctly. Additional experiments are also presented 
to analyze the strengths and limitations of our technique. 

We now briefly summarize the contents of the remainder 
of this paper. In the following section, we present our general 
framework for localizing region-based flows. In Section III, we 
introduce several energies implemented in this framework.In 
Section IV, we discuss some of the key implementation 
details. We go on to show numerous experiments in Section 
V. Here, we compare the proposed flows with their 
corresponding global flows, analyze key parameters, discuss 
limitations of the technique, and show several examples of  
accurate segmentations on  challenging images. In Section 
VI, we make concluding remarks and give directions for future 
research. 
 

II. LOCAL REGION-BASED FRAMEWORK 
 

In this section, we describe our proposed local region-based 
framework for guiding active contours. Within this framework, 
segmentations are not based on global region models. Instead, 
we allow the foreground and background to be described in 
terms of smaller local regions, removing the assumption that 
the foreground and background regions can be represented with 
global statistics. 

We will see that the analysis of local regions leads to the con- 
struction of a family of local energies at each point along the 
curve. In order to optimize these local energies, each point is 
considered separately, and moves to minimize (or maximize) 
the energy computed in its own local region. To compute these 
local energies, local neighborhoods are split into local interior 
and local exterior by the evolving curve. The energy optimiza- 
tion is then done by fitting a model to each local region. 

We let    denote a given image defined on the domain   , and 
let  be a closed contour represented as the zero level set of a 
signed distance function  , i.e.,                            [8], [9]. 
We specify the interior of  by the following approximation 
of the smoothed Heaviside function: 

                                                                                                                                                                        

                                                     otherwise. 

(1) 

Similarly, the exterior of  is defined as                      . 
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Fig. 2.  Ball is considered at each point along the contour. This ball is split by the 
contour into local interior and local exterior regions. In both images, the point 
is represented by the small dot. The neighbourhood is represented by the larger 
red circle. In (a), the local interior is the shaded part of the circle and in (b), the 
shaded part of the circle indicates the local exterior.[33] 

 
 

To specify the area just around the curve, we will use the 
derivative of            , a smoothed version of the Dirac delta 

 
 

 

(2) 
otherwise. 

 
We now introduce a second spatial variable   . In the re- 

mainder of this paper, we will use     and     as independent 
spatial variables each representing a single point in    . Using 
this notation, we introduce a characteristic function in terms of 
a radius parameter 

 

otherwise.                         
(3) 

We use    to mask local regions. This function will be 

1 
when the point    is within a ball of radius    centered at   , and 
0 otherwise. The interaction of  with the interior and 
exterior regions is illustrated in Fig. 2. Using  , we now 
define an energy functional in terms of a generic force function, 

. Our energy is given as follows: 

 
 

Finally, in order to keep the curve smooth, we add a regular- 
ization term as is commonly done. We penalize the arc length of 
the curve and weight this penalty by a parameter  . The final 
energy is given as follows: 
 

 
 

(5) 

By taking the first variation of this energy with respect to  we 
obtain the following evolution equation (see Appendix): 
 
 

 

 

(6) 

Notice that the only restriction on the internal energy,     is 
that its first variation with respect to  can be computed. This 
ensures that nearly all region-based segmentation energies can 
be put into this framework. 
 

III. VARIOUS INTERNAL ENERGY MEASURES 
Having formulated our framework in terms of a generic in- 

ternal energy measure    , we will introduce three specific en- 
ergies that can be inserted: the uniform modeling energy, the 
means separation energy, and the histogram separation energy. 
We present these energies as examples of how any energy can 
be improved by localization, and make no claim that one en- 
ergy out performs the others in all cases. In this section, we 
briefly describe each global energy, give an intuitive descrip- 
tion of its behavior, and then show how it can be incorporated 
into the generic framework described above. 

Two well known techniques [13], [16] make use of global 
mean intensities of the interior and exterior regions which we 
as denote    and   , respectively 
 

 
(7) 

(4) 
  

 

 
The function,     is a generic internal energy measure used to 

represent local adherence to a given model at each point along 
the contour. In Section III, we examine several possible candi- 
dates for    and show how any region-based energy can be mod- 
ified and rewritten as an     to be included in this framework. 

In computing    , we only consider contributions from the 
points near the contour. By ignoring inhomogeneity that may 
arise far away, we give ourselves the ability to capture a much 
broader range of objects. In (4), we accomplish this with multi- 
plication by the Dirac function,           in the outer integral over 

. Note that this term ensures that the curve will not change 
topology by spontaneously developing new contours, although 
it still allows for contours to split and merge. For every point 
selected by          , we mask with   to ensure that     
op- erates only on local image information about   . Thus, the 
total contribution of the first term of the energy is the sum of    
values for every             neighborhood along the zero level set. 

(8) 
 

 
In Sections III-A and III-B, we will discuss internal energy 

functions that rely on local mean intensities to separate regions. 
In these sections we make use of localized equivalents of   and 
defined in terms of the  function. The localized versions 
of the means,      and 
 

 
(9) 

 
 

 

(10) 
 

 
represent the intensity means in the interior and exterior of the 
contour localized by  at a point   . These localized statis- 
tics are needed to determine local energies at each point along 
the cur
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   IV.  IMPLEMENTATION DETAILS 

We have introduced energies in terms of a signed distance 
function, . This makes it very natural to implement flows 
in a level set framework as proposed by [6] and [8]. In order 
to improve efficiency, we only compute values of     in a 
narrow 
 

 
 

Fig. 3.  Advance,      and retreat,     forces are shown as they affect two inter- 
acting contours.[33] 

 

band around the zero level set [8]. Consequently, we re-initialize 
 every few iterations using a fast marching scheme [6]. 

The proposed local region-based method begins by initial- 
izing every pixel in the narrow band with the local interior and 
exterior statistics. The nature of this operation varies depending 
on the energy implemented. Computation of local means, for in- 
stance, is simpler than computation of local histograms. An ad- 
ditional cost occurs whenever the narrow band moves to include 
an uninitialized pixel. In this case, the local statistics of this new 
pixel must be initialized as well. The number of initialization op- 
erations performed is, therefore, dependent on how far from its 
final position the contour is initialized. The initialization opera- 
tion is only performed once for each pixel and, therefore, adds a 
constant complexity increase. However, depending on the size 
of the local radius, these computations can be significant. 

The update step occurs when any initialized pixel is crossed 
by the contour moving it from the interior to the exterior or vice 
versa. In our implementation we keep local statistical models in 
memory for every initialized pixel. When the interface crosses 
a pixel, the statistical models of all pixels within the   
neighborhood are updated. When local means are used, each 
pixel must maintain the number of pixels in the local regions 
both inside and outside of the curve as well as the sums of pixel 
intensities in those two regions. Updating this model consists 
of transferring values from the “inside” groups the “outside” 

groups or vice versa. For the histogram separation energy, we 
keep a full histogram of the local interior and exterior regions 
for each initialized pixel. Although this requires significantly 
more memory to maintain than the means model, updates are 
just as simple: pixel intensities are subtracted from bins of the 
interior histogram and added to the same bin of the associated 
exterior histogram or vice versa. 

Compared to global methods, local methods incur a linear in- 
crease in update computation to manage all of the local statis- 
tics. Assume that at each iteration,     pixels are crossed by the 
moving contour, and require an update of their statistics. A 
global region-based method would perform      statistical 
updates (one for each pixel), whereas the corresponding local 
region-based flow would perform            updates where     is 

the number of pixels that exist within the    
neighbourhood. Our experiments confirm this linear increase. 

 
V.  EXPERIMENTS 

In order to demonstrate the strengths and limitations of the 
proposed localized active contours, we performed several exper- 
iments. First, we compare the three presented localized energies 
with their global counterparts to show the improvements offered 
by localization. We follow this with a demonstration of the mul- 
tiple region segmentation methodology discussed in Section IV. 
Next, we continue with a study of the effects of local radius se- 
lection and contour initialization. Finally, we examine the speed 
and convergence properties of the proposed method. 
 
A.  Comparison With Global Energies 

In Section III, we presented three global energies and showed 
how they could be localized using the framework described in 
this work. Here, we demonstrate the improvements that are of- 
fered by such a localization. As with all segmentation tech- 
niques, these three global techniques behave somewhat differ- 
ently from one another. This is due to differences in the under- 
lying assumptions about the given image inherent in each en- 
ergy. Likewise, there are differences in the behavior of the cor- 
responding localized energies. The purpose of the experiments 
given below is to demonstrate that localization can improve the 
performance of a given global energy, not to specifically com- 
pare the original global energies themselves.  

In Fig. 4, we compare the global means separation energy 
from Section III-B and its corresponding localization. Notice 
that the global energy finds only the brightest parts of the image 
while the localization comes to rest on object boundaries. Both 
the HUG image and the MONKEY image show objects and 
backgrounds which are multimodal, but that have intensities that 
change smoothly and quickly. In the HUG image in Fig. 4, the 
proposed method is initialized with two ellipses that correspond 
to a single level set. The contour changes topology as the two 
ellipses merge to capture both animals. The initial position of the 
contour (chosen to be between the two animals) is necessary in 
order for it to segment these holes. 

 
VI.  CONCLUSION 

 
In this work, we proposed a novel framework based on local- 

izing region-based active contours, which in certain cases has 
resulted in significant improvement in accuracy for segmenting 
heterogeneous images. We introduced several energies of this 
localized type and presented the steps required to localize any 
global region-based energy. 
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Fig. 4.  Segmentations of the HUG and MONKEY images. (a) Shows the ini- 
tialization; (b) and (c) show segmentation using the global and local versions 
of the means separation energy respectively.  The dashed yellow circle in (c) 
represents the localization scale. 
 

We went on to draw important conclusions from our exper- 
iments. First, we showed several illustrative examples where 

global region-based energies failed while the localized versions 
gave  very  reasonable segmentations. Our  experiments with 
varying the size of the local radius demonstrated how local radii 
should be chosen in order to correspond to the size of salient 
objects and the proximity of nearby clutter. We also pointed 
out how convergence time decreases as radius size increases. 

Next, we analyzed the limitations of the technique including 
its increased sensitivity to initialization compared to global 
methods. Finally, we performed experiments on the execution 
time of the proposed techniques and their global counterparts to 
show that while the proposed methods are slower in some cases, 
the speed difference is not significant for most applications. 

Future work includes altering the size of the radius automati- 
cally which will remove the added parameter and allow the tech- 
nique to be used with less tuning by the user. 

Finally, the ability of this type of flow to capture heteroge- 
neous objects makes it ideal for use in some tracking applica- 
tions. This segmentation approach in combina- tion with 
existing contour trackers may allow these algorithms to keep 
track of an entire object rather than one region of homo- 
geneous intensity. 
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