
International Conference on Advanced Computing, Communication and networks’11

484

HIGH THROUGHPUT-LESS AREA EFFICIENT FPGA IMPLEMENTATION OF

BLOCK CIPHER AES ALGORITHM

 M.SIRIN KUMARI D.MAHESH KUMAR Y.RAMA DEVI

 (M.TECH) IIYEAR ASSOC.PROF M.TECH(DC).

 JITS-KNR JITS-KNR JBIT,HYD

 sirin.kumari@gmail.com rama_404@rediffmail.com

A b s t r a c t
This paper addresses design, hardware

implementation and performance testing of

AES algorithm. An optimized code for the

Rijndael algorithm with 128-bit keys has been

developed. The area and throughput are

carefully trading off to make it suitable for

wireless military communication and mobile

telephony where emphasis is on the speed as

well as on area of implementation.

Keywords: Cryptography, Rijndael,

Encryption,Advanced Encryption Standard

(AES), pipelining,security, very-large-scale

integration (VLSI), VHDL.

1 . I n t r o d u c t i o n
Several techniques, such as cryptography,

steganography, watermarking, and scrambling,

have been developed to keep data secure, private,

and copyright protected. However, the need for

secure transactions in ecommerce, private

networks, and secure messaging has moved

encryption into the commercial realm. Advanced

encryption standard (AES) was issued as Federal

Information Processing Standards (FIPS) by

National Institute of Standards and Technology

(NIST) as a successor to data encryption standard

(DES) algorithms. The hardwarebased

implementation of AES Rijndael Algorithm [1] is

required because it is secure and consumes much

less power than a software implementation. In

recent literature, a number of architectures for the

VLSI implementation of AES Rijndael algorithm

are reported [2] [3] [4] [5] [6]. Some of these are of

low performance and low throughput architectures.

Further, many of the architectures are not area

efficient and can result in higher cost when

implemented in silicon. Su et al. [15] presented an

implementation with reduced hardware overhead.

Satoh et. al. [6] presented a low performance

implementation with less hardware resources.

Verbauwhede et al. [2] presented an ASIC

implementation having a throughput of 2.29 Gb/s.

In 2001, Elbirt et al. [10] compared five algorithms

for AES block cipher FPGA implementations and

the throughputs of Rijndael algorithm were found

in the range of 188 Mb/s to 1.94Gb/s. McLoone

and McCanny [4] utilized look-up tables to

implement the entire Rijndael round function in

FPGAs and demonstrated a throughput of 12

Gb/s.A high throughput implementation is required

to support security for current and future high

bandwidth applications. A low silicon area

implementation is also, desirable to make it

embeddable not only in high-end servers but also

in low-end consumer products such as mobile

terminals. This paper addresses design,hardware

implementation and performance testing of AES

algorithm. An optimized code for the Rijndael

algorithm with 128-bit keys has been developed.

The area and throughput are carefully trading off to

make it suitable for wireless military

communication and mobile telephony where

emphasis is on the speed as well as on area of

implementation. The proposed architecture is

optimized for high throughput in terms of the

encryption and decryption data rates by keeping

the combinational paths balanced so that every

clock cycle is fully utilized. The paper is organized

as follows. In section 2, a brief overview of the

AES Algorithm is provided. Section 3, focuses

hardware architecture of the proposed design.

Performance analysis and measurement results are

mailto:sirin.kumari@gmail.com

International Conference on Advanced Computing, Communication and networks’11

485

reported in section 4. Finally, conclusions are

made in section 5.

2 . R I J N D A E L
A l g o r i t h m : A B r i e f
O v e r v i e w
The AES is a round based symmetric block cipher.

It takes a 128 bit data block as input and performs

several transformations on this block [4][6][12].

The AES-Rijndael algorithms operations are

performed in the state.

The State is a two-dimensional array of bytes,

consisting of four rows and Nb columns, where Nb

is the block length divided by 32. In AES

Algorithm, all bytes are represented as elements of

the finite field GF(28) Using the polynomial

representation, the byte{01100011} is represented

as x6+x5+x+1 or {63} in hexadecimal notation.

Mathematical operations with finite field elements

are different from those used for numbers. The

addition is achieved by adding the corresponding

powers of the two polynomials. This operation is a

modulo 2, i.e. it is an XOR operation.

Consequently, subtraction of finite field elements

isidentical to addition. ultiplication in GF is a

polynomial multiplication of degree 8. AES

algorithm specifies an irreducible polynomial as:

m(x) = x8+x4+x3+x+1 or {01}{0b}. There is no

simple operation available at byte level that

mplements this multiplication. The number of

rounds depends on the key size and blocks size and

is summarized in Table 1. The number of rounds

(Nr) is generated by the formula: Nr = (Key

Length (in bits))/32 + 6. In the proposed design,

we have used 128-bit key and cipher size and

therefore 10 rounds are needed.

3 . D e s i g n a n d
I m p l e m e n t a t i o n
The Encryption and Decryption flow of the AES

algorithm implemented is represented in Fig. 1
The decryption structure has exactly the same

sequence of transformation as that in the

encryption structure. This feature enables more

efficient implementation of joint Encryptor/

Decryptor. In a standard AES algorithm, there are

four steps i.e. SubByte, ShiftRows, MixColumns

and AddRoundKey in normal rounds for both the

Cipher and its Inverse (a) SubBytes - The bytes

substitution transformation is a non-linear

substitution of bytes that operates independently on

each byte of the State using a substitution table

(Sbox). This S-box is also invertible. (b)

ShiftRows – In the Shift Rows transformation

ShiftRows, the bytes in the last three rows of the

State are cyclically shifted over different numbers

of bytes (offsets). The first row is not shifted. (c)

MixColumns - a mixing operation which operates

on the columns of the state, combining the four

bytes in each column using a linear transformation.

(d) AddRoundKey - each byte of the state is

combined with the round key; each round key is

derived from the cipher key using a key

schedule.The largest component is Key Schedule.

A wide variety of architectures could be used to

implement a given algorithm [2,3]. In the proposed

design, an iterative architecture is chosen to suit

entire deign in the available single chip FPGA.

Fig. 1 (a) AES algorithm for Encryption

International Conference on Advanced Computing, Communication and networks’11

486

There are several variations on these approaches,

including multiple copies of an iterative

implementation for parallel processing, a partially

pipelined implementation, or a combination of

these hybrids (multiple copies of a partially

pipelined implementation). We have followed an

iterative approach followed by efficient utilization

of a number of operations in each clock cycles.

Despite the large amount of symmetry in

encryption and decryption, care has been taken to

eliminate symmetry in the behavior of the cipher.

This is achieved by the round constants that are

different for each round. In order to protect against

chosen plaintext and chosen cipher text attacks,

before the first round itself, a key addition layer is

applied. The motivation for this initial key addition

is the following. Any layer after the last key

addition in the cipher (or before the first in the

context of known-plaintext attacks) can be simply

peeled off without knowledge of the key and

therefore does not contribute to the security of the

cipher.

The Linear mixing of layer by shifting rows and

mixing columns guarantee high diffusion as the

transformations take place over multiple rounds.

The non-linear S boxes help to protect against

linear and differential cryptanalysis The Rijndael

block executes either encrypt or decrypt algorithm,

according to the case. As seen in Fig. 2, the other

processes only provide support to read and write

bus operation and to round keys generation. The

Data In process gives support to Rijndael. It is used

to take the data from the bus. It is controlled by the

WrD and Clk signals. When the bus puts a data to

be read, this signal is selected and the data is taken.

Mainly three modifications are proposed in our

design keeping in mind the tradeoff between

silicon area and throughput. They are, (i) Merger

of Sub Bytes and Shift Rows (ii) Generating the

Sub Bytes for Encryption and using Look up table

for Decryption (iii) Each clock cycle is efficiently

assigned to complete a set of operations.

Fig.1(b) AES algorithm for Decryption Flow

3 . 1 M e r g e r o f S u b B y t e s
a n d S h i f t R o w s
This merging is performed by calling required

shifted element from the data matrix, instead of

calling element one by one sequentially from the

data matrix. Thereby SUB-BYTE and SHIFT

ROW operations are carried out in one-step instead

of two. Fig. 3 shows how the merger is performed.

The 16 elements are stored sequentially after each

round in a register file. Using Mux selection,

required shifted data elements are called (instead

of calling sequentially) from the register file and

put into the State. This merging process would

increase throughput since elements are not called

sequentially and a balance between throughput and

area is maintained.

International Conference on Advanced Computing, Communication and networks’11

487

Fig. 3. Merging of Sub Bytes and Shift Rows

3 . 2 G e n e r a t i n g t h e S u b
K e y f o r E n c r y p t i o n a n d
u s i n g L o o k u p t a b l e f o r
D e c r y p t i o n
The SubBytes(S-box) transformation, which

consists of a multiplicative inversion over GF (28)

and an affine

transform is the most critical part in the AES

Algorithm, as far as computational complexity is

concerned. The S-box operation is required both

for encryption and for key expansion. The S-box

dominates the hardware complexity of the AES

circuit. Conventionally the coefficients of the S-

Box and inverse S-box are stored in LUT’s, or a

hard-wired multiplicative inverter over GF (28)

can be used together with the affine

transformation. We propose a multiplicative

inverter together with the affine transformation be

applied to the encryption unit. The LUT’s be used

for storing the coefficients of the inverse S-Box for

the Decryption Unit is shown in Fig.4. (a) (b) Most

approaches use a ROM/RAM-based lookup table

(LUT) to implement the most critical

transformation step in the AES algorithm, the

SubBytes transformation as described in Fig. 2(a).

This approach is cost effective for SRAM-based

FPGAs, The image cannot be displayed. Your

computer may not have enough memory to open

the image, or the image may have been corrupted.

Restart your computer, and then open the file

again. If the red x still appears, you may have to

delete the image and then insert it again.

integrated circuit (ASIC) implementation. Results

from several other projects indicates that the

implementation of an arithmetic circuit in a

composite field to compute the multiplicative

inverse and affine transformation of the S-Box

provides an excellent trade-off between silicon

area and performance. The composite field

implementation was first recommended by the

inventor of Rijndael [9]. Other implementations

based on this idea can be found in [5-8]. However,

no approach has been made so far on using both

the LUT-based approach as well the composite

field implementation. Since the Encryption Unit

and the Key Scheduling Component require the S-

box, we propose that the S-box be generated using

composite field implementation in this case and

that LUT’s be used for storing the coefficients of

the inverse S-box for the Decryption Unit. This

would ensure high throughput as well as less area

resources.The Key Scheduling Component

performs Round Key generation. This round key

could be generated dynamically each round based

on the previous rounds key or they can be

generated at the start and stored in the RAM. The

former case however, would offer much less

buffering.

3.3 Optimization of each clock cycle to

incorporate maximum number of operations

Various types of hardware architectures for AES

Algorithm are possible. As mentioned earlier,

architecture that offers the best tradeoff between

data throughput and silicon area is targeted in this

work.Each clock cycle is efficiently assigned to

complete a set of operations and the entire

Encryption/decryption round can be completed

with less clock cycles.

4. Performance Analysis

The proposed architecture was implemented using

VHDL and implemented on Xilinx’s Web pack

version 8.2i. The implementations were simulated

for the correct encryption and decryption operation

International Conference on Advanced Computing, Communication and networks’11

488

using the test vectors provided by the AES

submission package [4][11]. The VHDL code of

the design is synthesized, placed and routed using

target device of Xilinx (Virtex2Pro). The

architecture was simulated for verification of the

correct functionality. It is important to determine

the amount of data that the channel can use with

cryptography. The throughput is calculated with

the following formula: Throughput =block size *

frequency / total clock cycles. The Post Route

Simulation analysis is performed. The input and

the cipher key are given to the device and the

output is displayed at the 27th clock cycle (after 26

cycles),there by achieving a sufficient throughput

rate with a significant compromise on area. The

standard used is 128-bit key and 128-bit data block

size, therefore, the Control Component allows for

only 10 rounds of AES encryption. The number of

cycles per encryption block is 13. The maximum

clock frequency is 142 MHz. The encryption and

decryption throughput is given by 1.4Gbps. The

parameters used to evaluate the quality of device

are summarized in Table II. Two designs are

compared. The original design based on simple

iterative architecture cost large amount of area

with a low throughput. The proposed design with

the three modifications discussed in section 3

resulted in a much compact implementation with

high throughput. Besides, it gave optimum usage

of silicon area as only 50% of the resources are

used (XC2VP30ff896). In addition, the speed is

also improved four times.A comparison of various

AES Designs is given in Table III. Only [14] has

used computational arithmetic (multiplication and

affine transform) over GF (28) to generate the S-

box required. All the other architectures in Table

III have made use of a ROM/RAM based Look up

Table (LUT) to implement this transformation.

Jarvinen et al. and [4] have used much lesser slices

than our work but they have compensated

it by utilizing more BRAM’s. Most designs have

followed a pipeline architecture that has led to their

increased throughput values. Recently, Hodjat and

Ingrid [16]'s FPGA implementation showed a high

throughput of 21.54 Gb/s using a fully pipelined

approach with inner-round pipelining and outer-

round pipelining. In our approach, we have worked

with an iterative structure and with fully pipelined

and resource-sharing methods; we hope to achieve

better throughputs in future. Though proposed

design does not offer a very high throughput and

throughput/slice value due to lack of pipelining, it

offers a significant decrease in the number of slices

required. The motivation behind this work was to

achieve a tradeoff between throughput with area

and results are satisfactory.

5 . C o n c l u s i o n s
The objective of this paper was to present the

hardware implementation of Advanced Encryption

Standard (AES) algorithm. The importance of the

Advanced Encryption Standard and the

significance of area-throughput balanced

implementations of the Rijindael have examined.

We have worked with an iterative structure and

modifications such as merging of Subbytes and

ShiftRows, Look Up tables for decryption, and

optimization of each clock cycle to incorporate

maximum number of operations etc. have been

successfully implemented. The encryption and

decryption process of Rijndael algorithm was

captured in VHDL language and corresponding

FPGA implementation resulted in reduced number

of slices and achieved a data throughput of 1.4

Gbit/sec. The combination of security, and high-

speed implementation and marginal silicon area

makes it a very good choice for wireless systems.

R e f e r e n c e s
1. W. Diffle and H.Hellman, “Privacy and

authentication: An Introduction to cryptography”,

Proceedings of

 IEEE, pp 397-427, vol 67, 1979.

2. H. Kuo and I. Verbauwhede, “Architectural

Optimization for a 1.82Gbits/sec VLSI

Implementation of the

 AES Rijindael Algorithm”, 3rd international

workshop cryptographic Hardware and embedded

systems

International Conference on Advanced Computing, Communication and networks’11

489

 (CHES 2001), LNCS2162,Paris, pp 51-64, May

2001.

3. I. Verbauwhede and H. Kuo, “Design and

performance testing of a 2.29Gbits/sec Rijindael

algorithm”,

 IEEE Journal of solid state circuits, vol38, No.3,

pp 569-572, March 2003.

4. M. McLoone and J. McCanny, “High

Performance Single-Chip FPGA Rijndael

Algorithm

 Implementations,” Proceedings Cryptographic

Hardware and Embedded Systems

Workshop,CHES, Paris,

 May 2001.

5. S. Mangard, M. Aigner, and S. Dominikus, “A

Highly Regular and Scalable AES Hardware

Architecture,”

 IEEETrans. Comp.,vol. 52, no. 4, pp. 483–91,

Apr.2003

 6. A. Satoh et al., “A Compact Rijndael

HARDWARE Architecture with S-Box

Optimization,”

 ASIACRYPT 2001 LNCS, vol. 2248, pp. 239–

54,

7. J. Wolkerstorfer, E. Oswald, and M. Lamberger,

“An ASIC Implementation of the AES SBoxes,”

CT-RSA

 2002, vol. 2271 of LNCS, Springer-Verlag, pp.

67–78, 2002

