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A b s t r a c t   
This paper addresses design, hardware 

implementation and performance testing of 

AES algorithm. An optimized code for the 

Rijndael algorithm with 128-bit keys has been 

developed. The area and throughput are 

carefully trading off to make it suitable for 

wireless military communication and mobile 

telephony where emphasis is on the speed as 

well as on area of implementation.  
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1 .  I n t r o d u c t i o n  
Several techniques, such as cryptography, 

steganography, watermarking, and scrambling, 

have been developed to keep data secure, private, 

and copyright protected. However, the need for 

secure transactions in ecommerce, private 

networks, and secure messaging has moved 

encryption into the commercial realm. Advanced 

encryption standard (AES) was issued as Federal 

Information Processing Standards (FIPS) by 

National Institute of Standards and Technology 

(NIST) as a successor to data encryption standard 

(DES) algorithms. The hardwarebased 

implementation of AES Rijndael Algorithm [1] is 

required because it is secure and consumes much 

less power than a software implementation. In 

recent literature, a number of architectures for the 

VLSI  implementation of AES Rijndael algorithm 

are reported [2] [3] [4] [5] [6]. Some of these are of 

low performance and low throughput architectures. 

Further, many of the architectures are not area 

efficient and can result in higher cost when 

implemented in silicon. Su et al. [15] presented an 

implementation with reduced hardware overhead. 

Satoh et. al. [6] presented a low performance 

implementation with less hardware resources. 

Verbauwhede et al. [2] presented an ASIC 

implementation having a throughput of 2.29 Gb/s. 

In 2001, Elbirt et al. [10] compared five algorithms 

for AES block cipher FPGA implementations and 

the throughputs of Rijndael algorithm were found 

in the range of 188 Mb/s to 1.94Gb/s. McLoone 

and McCanny [4] utilized look-up tables to 

implement the entire Rijndael round function in 

FPGAs and demonstrated a throughput of 12 

Gb/s.A high throughput implementation is required 

to support security for current and future high 

bandwidth applications. A low silicon area  

implementation is also, desirable to make it 

embeddable not only in high-end servers but also 

in low-end consumer products such as mobile 

terminals. This paper addresses design,hardware 

implementation and performance testing of AES 

algorithm. An optimized code for the Rijndael 

algorithm with 128-bit keys has been developed. 

The area and throughput are carefully trading off to 

make it suitable for wireless military 

communication and mobile telephony where 

emphasis is on the speed as well as on area of 

implementation. The proposed architecture is 

optimized for high throughput in terms of the 

encryption and decryption data rates by keeping 

the combinational paths balanced so that every 

clock cycle is fully utilized. The paper is organized 

as follows. In section 2, a brief overview of the 

AES Algorithm is provided. Section 3, focuses 

hardware architecture of the proposed design. 

Performance analysis and measurement results are 
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reported in section 4. Finally, conclusions are 

made in section 5.  

 

 
 
2 .  R I J N D A E L  
A l g o r i t h m :  A  B r i e f  
O v e r v i e w  
The AES is a round based symmetric block cipher. 

It takes a 128 bit data block as input and performs 

several transformations on this block [4][6][12]. 

The AES-Rijndael algorithms operations are 

performed in the state. 

The State is a two-dimensional array of bytes, 

consisting of four rows and Nb columns, where Nb 

is the block length divided by 32. In AES 

Algorithm, all bytes are represented as elements of 

the finite field GF(28) Using the polynomial 

representation, the byte{01100011} is represented 

as x6+x5+x+1 or {63} in hexadecimal notation. 

Mathematical operations with finite field elements 

are different from those used for numbers. The 

addition is achieved by adding the  corresponding 

powers of the two polynomials. This operation is a 

modulo 2, i.e. it is an XOR operation. 

Consequently, subtraction of finite field elements 

isidentical to addition.  ultiplication in GF is a 

polynomial multiplication of degree 8. AES 

algorithm specifies an irreducible  polynomial as: 

m(x) = x8+x4+x3+x+1 or {01}{0b}. There is no 

simple operation available at byte level that  

mplements this multiplication. The number of 

rounds depends on the key size and blocks size and 

is summarized in Table 1. The number of rounds 

(Nr) is generated by the formula: Nr = (Key 

Length (in bits))/32 + 6. In the proposed design, 

we have used 128-bit key and cipher size and 

therefore 10 rounds are needed. 

 

 

3 .  D e s i g n  a n d  
I m p l e m e n t a t i o n  
The Encryption and Decryption flow of the AES 

algorithm implemented is represented in Fig. 1   
The decryption structure has exactly the same 

sequence of transformation as that in the 

encryption structure. This feature enables more 

efficient implementation of joint Encryptor/ 

Decryptor. In a standard AES algorithm, there are 

four steps i.e. SubByte, ShiftRows, MixColumns 

and AddRoundKey in normal rounds for both the 

Cipher and its Inverse  (a) SubBytes - The bytes 

substitution transformation is  a non-linear 

substitution of bytes that operates independently on 

each byte of the State using a substitution table 

(Sbox). This S-box is also invertible. (b) 

ShiftRows – In the Shift Rows transformation 

ShiftRows, the bytes in the last three rows of the 

State are cyclically shifted over different numbers 

of bytes (offsets). The first row is not shifted. (c) 

MixColumns - a mixing operation which operates 

on the columns of the state, combining the four 

bytes in each column using a linear transformation. 

(d) AddRoundKey - each byte of the state is 

combined with the round key; each round key is 

derived from the cipher key using a key 

schedule.The largest component is Key Schedule. 

A wide variety of architectures could be used to 

implement a given algorithm [2,3]. In the proposed 

design, an  iterative architecture is chosen to suit 

entire deign in the available single chip FPGA.  

 
Fig. 1 (a) AES algorithm for Encryption 
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There are several variations on these approaches, 

including multiple copies of an iterative 

implementation for parallel processing, a partially 

pipelined implementation, or a combination of 

these hybrids (multiple copies of a partially 

pipelined implementation). We have followed an 

iterative approach followed by efficient utilization 

of a number of operations in each clock cycles. 

Despite the large amount of symmetry in 

encryption and decryption, care has been taken to 

eliminate symmetry in the behavior of the cipher. 

This is achieved by the round constants that are 

different for each round. In order to protect against 

chosen plaintext and chosen cipher text attacks, 

before the first round itself, a key addition layer is 

applied. The motivation for this initial key addition 

is the following. Any layer after the last key 

addition in the cipher (or before the first in the 

context of known-plaintext attacks) can be simply 

peeled off without knowledge of the key and 

therefore does not contribute to the security of the 

cipher. 

The Linear mixing of layer by shifting rows and 

mixing columns guarantee high diffusion as the 

transformations take place over multiple rounds. 

The non-linear S boxes help to protect against 

linear and differential cryptanalysis The Rijndael 

block executes either encrypt or decrypt algorithm, 

according to the case. As seen in Fig. 2, the other 

processes only provide support to read and write 

bus operation and to round keys generation. The 

Data In process gives support to Rijndael. It is used 

to take the data from the bus. It is controlled by the 

WrD and Clk signals. When the bus puts a data to 

be read, this signal is selected and the data is taken. 

Mainly three modifications are proposed in our 

design keeping in mind the tradeoff between 

silicon area and throughput. They are, (i) Merger 

of Sub Bytes and Shift Rows (ii) Generating the 

Sub Bytes for Encryption and using Look up table 

for Decryption (iii) Each clock cycle is efficiently 

assigned to complete a set of operations. 

 
Fig.1(b) AES algorithm for Decryption Flow 

 

3 . 1  M e r g e r  o f  S u b  B y t e s  
a n d  S h i f t  R o w s  
This merging is performed by calling required 

shifted element from the data matrix, instead of 

calling element one by one sequentially from the 

data matrix. Thereby SUB-BYTE and SHIFT 

ROW operations are carried out in one-step instead 

of two. Fig. 3 shows  how the merger is performed. 

The 16 elements are stored sequentially after each 

round in a register file. Using Mux selection, 

required shifted data elements are called (instead 

of calling sequentially) from the register file and 

put into the State. This merging process would 

increase throughput since elements are not called 

sequentially and a balance between throughput and 

area is maintained. 
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Fig. 3. Merging of Sub Bytes and Shift Rows 

 

3 . 2  G e n e r a t i n g  t h e  S u b  
K e y  f o r  E n c r y p t i o n  a n d  
u s i n g  L o o k  u p  t a b l e  f o r  
D e c r y p t i o n  
The SubBytes(S-box) transformation, which 

consists of a multiplicative inversion over GF (28) 

and an affine 

transform is the most critical part in the AES 

Algorithm, as far as computational complexity is 

concerned. The S-box operation is required both 

for encryption and for key expansion. The S-box 

dominates the hardware complexity of the AES 

circuit.  Conventionally the coefficients of the S-

Box and inverse S-box are stored in LUT’s, or a 

hard-wired multiplicative inverter over GF (28) 

can be used together with the affine 

transformation. We propose a multiplicative 

inverter together with the affine transformation be 

applied to the encryption unit. The LUT’s be used 

for storing the coefficients of the inverse S-Box for 

the Decryption Unit is shown in Fig.4. (a) (b) Most 

approaches use a ROM/RAM-based lookup table 

(LUT) to implement the most critical 

transformation step in the AES algorithm, the 

SubBytes transformation as described in Fig. 2(a). 

This approach is cost effective for SRAM-based 

FPGAs, The image cannot be displayed. Your 

computer may not have enough memory to open 

the image, or the image may have been corrupted. 

Restart your computer, and then open the file 

again. If the red x still appears, you may have to 

delete the image and then insert it again. 

integrated circuit (ASIC) implementation. Results 

from several other projects indicates that the 

implementation of an arithmetic circuit in a 

composite  field to compute the multiplicative 

inverse and affine transformation of the S-Box 

provides an excellent trade-off between silicon 

area and performance. The composite field 

implementation was first recommended by the 

inventor of Rijndael [9]. Other implementations 

based on this idea can be found in [5-8]. However, 

no approach has been made so far on using both 

the LUT-based approach as well the composite 

field implementation. Since the Encryption Unit 

and the Key Scheduling Component require the S-

box, we propose that the S-box be generated using 

composite field implementation in this case and 

that LUT’s be used for storing the coefficients of 

the inverse S-box for the Decryption Unit. This 

would ensure high throughput as well as less area 

resources.The Key Scheduling Component 

performs Round Key generation. This round key 

could be generated dynamically each round based 

on the previous rounds key or they can be 

generated at the start and stored in the RAM. The 

former case however, would offer much less 

buffering. 

 

3.3 Optimization of each clock cycle to 

incorporate maximum number of operations 

Various types of hardware architectures for AES 

Algorithm are possible. As mentioned earlier, 

architecture that offers the best tradeoff between 

data throughput and silicon area is targeted in this 

work.Each clock cycle is efficiently assigned to 

complete a set of operations and the entire 

Encryption/decryption round can be completed 

with less clock cycles. 

 

4. Performance Analysis 

The proposed architecture was implemented using 

VHDL and implemented on Xilinx’s Web pack 

version 8.2i. The implementations were simulated 

for the correct encryption and decryption operation 
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using the test vectors provided by the AES 

submission package [4][11]. The VHDL code of 

the design is synthesized, placed and routed using 

target device of Xilinx (Virtex2Pro). The 

architecture was simulated for verification of the 

correct functionality. It is important to determine 

the amount of data that the channel can use with 

cryptography. The throughput is calculated with 

the following formula: Throughput =block size * 

frequency / total clock cycles. The Post Route 

Simulation analysis is performed. The input and 

the cipher key are given to the device and the 

output is displayed at the 27th clock cycle (after 26 

cycles),there by achieving a sufficient throughput 

rate with a significant compromise on area. The 

standard used is 128-bit key and 128-bit data block 

size, therefore, the Control Component allows for 

only 10 rounds of AES encryption. The number of 

cycles per encryption block is 13. The maximum 

clock frequency is 142 MHz. The encryption and 

decryption throughput is given by 1.4Gbps. The 

parameters used to evaluate the quality of device 

are summarized in Table II. Two designs are 

compared. The original design based on simple 

iterative architecture cost large amount of area 

with a low throughput. The proposed design with 

the three modifications discussed in section 3 

resulted in a much compact implementation with 

high throughput. Besides, it gave optimum usage 

of silicon area as only 50% of the resources are 

used (XC2VP30ff896). In addition, the speed is 

also improved four times.A comparison of various 

AES Designs is given in Table III. Only [14] has 

used computational arithmetic (multiplication and 

affine transform) over GF (28) to generate the S-

box required. All the other architectures in Table 

III have made use of a ROM/RAM based Look up 

Table (LUT) to implement this transformation. 

Jarvinen et al. and [4] have used much lesser slices 

than our work but they have compensated 

it by utilizing more BRAM’s. Most designs have 

followed a pipeline architecture that has led to their 

increased throughput values. Recently, Hodjat and 

Ingrid [16]'s FPGA implementation showed a high 

throughput of 21.54 Gb/s using a fully pipelined 

approach with inner-round pipelining and outer-

round pipelining. In our approach, we have worked 

with an iterative structure and with fully pipelined 

and resource-sharing methods; we hope to achieve 

better throughputs in future. Though proposed 

design does not offer a very high throughput and 

throughput/slice value due to lack of pipelining, it 

offers a significant decrease in the number of slices 

required. The motivation behind this work was to 

achieve a tradeoff between throughput with area 

and results are satisfactory. 

 

5 .  C o n c l u s i o n s  
The objective of this paper was to present the 

hardware implementation of Advanced Encryption 

Standard (AES) algorithm. The importance of the 

Advanced Encryption Standard and the 

significance of area-throughput balanced 

implementations of the Rijindael have examined. 

We have worked with an iterative structure and 

modifications such as merging of Subbytes and 

ShiftRows, Look Up tables for decryption, and 

optimization of each clock cycle to incorporate 

maximum number of operations etc. have been 

successfully implemented. The encryption and 

decryption process of Rijndael algorithm was 

captured in VHDL language and corresponding 

FPGA implementation resulted in reduced number 

of slices and achieved a data throughput of 1.4 

Gbit/sec. The combination of security, and high-

speed implementation and marginal silicon area 

makes it a very good choice for wireless systems. 
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