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Abstract— Data Mining is one of the eminent research fields to 

find interesting trends or patterns in large datasets. In order to 

work with the numeric or categorical data, the classification 

technique suits well for analyzing and processing for wider 

variety of large databases. Efficiency and scalability are 

fundamental issues concerning data mining in large databases. 

This paper describes the stability and quality of quantifiable 

elements among the given datasets and presented the 

representations of AVL trees for stability and Decision trees for 

quality. Further, the approach was extended and implemented 

for the employability of the students as large data sets for an 

educational institute. 
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I. INTRODUCTION 

Computational efficiency and scalability are two important 
and challenging issues in data mining. Data mining is the 
automated discovery of nontrivial, previously unknown, and 
potentially useful patterns embedded in databases [1]. The 
increasing computerization of all aspects of life has led to the 
storage of massive amounts of data. Large scale data mining 
applications involving complex decision making can access 
billions of bytes of data. Hence, the efficiency of such 
applications is paramount. 

Classification is a key data mining technique whereby 
database tuple acting as training samples, are analyzed in order 
to produce a model of the given data [2][18]. Each tuple is 
assumed to belong to a predefined class, as determined by one 
of the attributes, called the classifying attribute. Once derived, 
the classification model can be used to categorize future data 
samples, as well as provide a better understanding of the 
database contents. Classification has numerous applications 
including credit approval, product marketing, and medical 
diagnosis. 

A number of classification techniques from the statistics 
and machine learning communities have been proposed 
[2][6][7]. A well accepted method of classification is the 
induction of decision trees [4][6]. A decision tree is a flowchart 
like structure consisting of internal nodes, leaf nodes, and 
branches. Each internal node represents a decision, or test, on a 
data attribute, and each outgoing branch corresponds to a 
possible outcome of the test. Each leaf node represents a class. 
In order to classify an unlabeled sample against the decision 
tree, a path is traced from the root to a leaf node which holds 
the class predicate for that sample. Decision trees can easily be 
converted into IFTHEN rules [6] and used for decision making.  

The efficiency of the existing decision tree algorithms, such 
as ID3[4], C4.5[6] and CART[6], has been established for 
relatively small data sets[8]. Most decision tree algorithms 
have restriction that the training tuples should reside in main 
memory. In data mining applications, very large training sets of 
millions of examples are common. Hence, this restriction limits 
the scalability of such algorithms, where the decision tree 
construction can become inefficient due to swapping of the 
training samples in and out of main and cache memories. 

The induction of decision trees from very large training sets 
has been previously addressed by the SLIQ [9] and SPRINT 
[10] decision tree algorithms. These proposed presorting 
techniques on disk resident data sets are too large to fit in 
memory. While SLIQ’s scalability, however, is limited by the 
use of a memory resident data structure, SPRINT removes all 
memory restrictions and hence can handle data sets that are too 
large for SLIQ [10]. Unlike SLIQ and SPRINT, which operate 
on the raw low level data, we address the efficiency and 
scalability issues by proposing a different approach, consisting 
of three steps: 1) attribute oriented induction [11][12], where 
concept hierarchies are used to generalize low level data to 
higher level concepts, 2) relevance analysis [13], and 3) 
multilevel mining[17], whereby decision trees can be induced at 
different levels of abstraction. 
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In the aspect of computer science, an AVL tree is the first 
data structure which was invented as a self-balancing binary 
search tree. Such trees are used to sustain the stability of 
quantifiable distinguishable elements in a given large dataset 
[14]. All the operations including search, insert, and delete take 
O(log n) time in both the average and worst cases, where n is 
the number of nodes in the tree prior to the operation. In insert 
and delete operations we observe that trees become unbalanced 
and in such cases the tree is required to be rebalanced by one or 
more rotations.  

A binary tree is an AVL-tree if each node satisfies the BST 
property i.e root node is greater than left node and lesser than 
the right node and the difference between the heights of the sub 
tree should not exceed one. The balance factor of a node in a 
AVL tree is the height of its left sub tree minus the height of its 
right sub tree (sometimes opposite) and a node with balance 
factor 1, 0, or -1 is considered balanced. A node with any other 
balance factor is considered unbalanced and requires 
rebalancing the tree. The balance factor is either stored directly 
at each node or can be computed from the heights of the sub 
trees. AVL trees are more statically balanced, so these are 
faster for lookup intensive applications.  

Statistically, this paper is worked on an educational 
enterprise to deal the huge dataset and applying the 
classification model by attribute oriented induction method. 
The student data is generalized into various categories and 
removed irrelevant attributes to obtain a concise set of data and 
then at multiple levels data is mined and finally succeeded in 
delivering class labels to test the nodes in decision tree in 
handling few decisions for instance whether a given student is 
eligible for placement or not. The combination of mathematics 
and computational capabilities generates the tree which helps in 
generalization of data. Hence, decision trees forms the basis in 
data mining in extracting the attributes from databases and 
correlated to the problem specific in automating a decision 
making system. Such trees rate high in information extraction 
and prediction which can be achieved by data preprocessing.  

The approach is specified as the following sessions. Session 
II presents the Related Work, Session III presents the 
Classification using Decision Tree Induction, Session IV 
specifies the Decision Tree Construction using the proposed 
approach and Session V illustrates the proposed Decision Tree 
method with AVL trees. We conclude our study in Session VI 
and discuss the possible extensions based on our current work.  

II. RELATED WORK 

Binary tree is a tree which has only 2 branches and these 
branches can in turn have 2 sub branches and so on. Tree 
structures perform all the basic operations like insert, update, 
delete and search can be done with time proportionality as a 
constant to the height of the tree. The tree of short height is 
easily understandable and we need to maintain the height as a 
running component. To ensure this red-black trees, AVL trees 
must be used. B-trees are balanced trees that try to minimize 
the number of disk accesses. B-trees are good for searches in 
linear manner, but cause some overhead issues in wasting 
space. B-trees have to be rebuilt after a crash and so these are 
not more valuable 

Regression tree is quite similar to a B-tree used for indexing 
multidimensional information [4]. Here in this approach, a 
node is allowed to find its way downward the tree to the 
appropriate location. Each entry within a non leaf node stores 
two pieces of information: about its child node and its 
bounding box. Each entry within a leaf node stores two pieces 
of information: actual data element and its bounding box. In 
insertion and deletion algorithms, the bounding boxes from the 
nodes will ensure that closer elements are placed in the same 
leaf node. Similarly, the searching algorithms (e.g., 
intersection, containment, nearest) use the bounding boxes to 
decide whether or not to search inside a child node. 
Appropriately, most of the nodes in the tree are never touched 
and used during a search. In this scenario, just like B-trees, R-
trees are viewed suitable for databases, where nodes can be 
paged to memory when needed. Likewise, node insertion and 
deletion are difficult here. 

AVL trees are performed exactly as unbalanced binary 
search tree [15]. In a look up process of a node, once a node 
has been found in a balanced tree, the next or previous nodes 
can be explored by the reduction of the value of an asset by 
prorating its cost in a series of time. Few cases require 
traversing up to 2×log(n) links where n is the number of nodes 
in the tree. Exploring all n nodes in this manner will use each 
link exactly twice, and there will be (n-1) links, at the rate of 2 
×(n-1)/n series of time, approximately 2. 

Decision tree learning is a method in data mining that uses 
decision tree as a predictive model and uses the tree to create a 
model that predicts the value of a target variable based on 
several input variables. The leaves represent the classifications 
and the branches represent the conjunctions that lead to 
different classifications. The meta data that is stored in non leaf 
node affects in sorting of the tree. For every possible value of 
the input variable, each non leaf node represents one of the 
input variables and it is represented as an edge to children. For 
the given values of the input variables, each leaf node denotes a 
value of the target variable and it is represented by the path 
from the root to the leaf. A tree can be understood by 
generalizing the source set into subsets based on an attribute 
value test. This process is repeated on each derived subset in a 
recursive manner until the subset at a node all has the same 
value of the target variable, or when generalization can no 
longer adds meaning to the predictions. 

III. CLASSIFICATION USING DECISION TREE INDUCTION 

The stability and quality regarding the data mining of large 
datasets are composed of the following 

1) Generalization by attribute-oriented induction, to 
compress the training data. This includes storage of the 
generalized student data to allow users to view the various data 
abstractions 

2) Relevance analysis, to remove unnecessary data 
attributes, thereby further compacting the training data. 

3) Multilevel mining, which combines the induction of 
decision trees with knowledge in concept hierarchies.  
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A. Attribute-Oriented Induction(AOI) 

Generalization is the way of processing the raw data of any 
database may contain many attributes to be reduced by 
considering only the required attributes and continuing the 
process [16]. Attribute-Oriented induction is generalizing the 
data in to the required format that can replace primitive data 
into higher types (attribute removal). It allows the user to view 
the data at more meaningful abstractions. Furthermore, 
scalability issue is addressed in attribute-oriented induction by 
compressing the training data. In this paper we considered an 
Educational campus-placement center example, in which an 
attribute having all sub-nodes that has a class label ―yes‖ can 
be replaced by a single node with class label ―yes‖ and can 
check the other attributes against the conditions assumed. 
Attribute removal further compact the training data and reduces 
the bushiness of the resulting trees. The degree of 
generalization is controlled by a threshold. If the number of 
distinct values of an attribute is less than or equal to this 
threshold, then further generalization of the attribute is halted. 
Hence, attribute oriented induction not only provides increasing 
efficiency, also results in classification trees that are more 
understandable, smaller, and easier to interpret than trees 
obtained from methods operating on ungeneralized sets of low-
level data.  

B. Relevance Analysis 

The uncertainty coefficient U(A) [17] for attribute A is used 
to further reduce the size of the generalized training data. U(A) 
is obtained by normalizing the information gain of A so that 
U(A) ranges from 0 (meaning statistical independence between 
A and the classifying attribute) to 1 ( strongest degree of 
relevance between the two attributes). The user has the option 
of retaining either the n most relevant attributes or all attributes 
whose uncertainty coefficient value is greater than a pre-
specified uncertainty threshold, where n and the threshold are 
user-defined. Note that it is much more efficient to apply the 
relevance analysis [13] to the generalized data rather than to the 
original training data 
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Here P is the set of the final generalized training data, where P 

contains m distinct values defining with the output distinct 

output class Pi (for i = 1, 2, 3,…,m) and P contains Pi samples 

for each pi, then the expected information needed to classify a 

given sample is I (P1, P2,…, Pm ).  

 
For example: we have the attribute A with the generalized 

final value {a1 ,a2 ,a3 , ...,ak} can be partition P into {C1 ,C2 ,C3 , 
... ,Ck} , where Cj contain those samples in C that have value aj 

of A. The expected information based on partitioning by A is 

given by E(A) [17] equation, which is the average of the 
expected information. The gain (A) is the difference of the two 
calculations. If the uncertainty coefficient for attribute A is 0, it 
means no matter how we partition the attribute A, we won’t get 
lose information. So the attributes A has no effect on the 
building of the final decision tree. If U (A) is 1, it means that 
we can use this attribute to classify the final decision tree. This 
is similar to find the max goodness in the class to find which 
attribute we can use to classify the final decision tree.  

C. Multilevel Mining 

Multilevel Mining method mines the data at different levels in 

the form of a decision tree which serves the desired outcome. 

It takes the input as Attribute oriented induction output and 

mines. The AVL-Tree will only support the decision making, 

while remaining all the other conditions have to be further 

generated. The information gain in attribute selection criterion 

has a tendency to favor multi valued attributes [17].The 

induction of decision trees is done at different levels of 

abstraction by employing the knowledge stored in the concept 

hierarchies. Furthermore, once a decision tree has been 

derived, the concept hierarchies can be used to generalize 

individual nodes in the tree and can reclassify data for the 

newly specified abstraction level. Generalization to very high 

concept levels can result in decision trees of little use since 

overgeneralization may cause the loss of interesting and 

important sub concepts.  

IV. DECISION TREE CONSTRUCTION 

The main idea of this paper is to construct a decision tree 
based on the proposed steps and prune it accordingly. The basic 
Decision Tree Construction Algorithm 1 is shown in Figure 1 
which constructs a decision tree for the given training data. 

Apart from generalization threshold, we also use two other 
thresholds for improving the efficiency namely, exception 
threshold (€) and classification threshold (ĸ). Because of the 
recursive partitioning, some resulting data subsets may become 
so small that partitioning them further would have no 
statistically significant basis. These insignificant data subsets 
are statistically determined by the exception threshold. If the 
portion of samples in a given subset is less than the threshold, 
further partitioning of the subset is halted. Instead, a leaf node 
is created which stores the subset and class distribution of the 
subset samples.  

In this process, the candidate with maximum information 
gain is selected as ―test‖ attribute and is partitioned. The 
conditions, whether the frequency of the majority class in a 
given subset is greater than the classification threshold, or 
whether the percentage of training objects represented by the 
subset is less than the exception threshold, are used to 
terminate classification. Otherwise further classification will be 
performed recursively.  

We consider a simple example to explain all the detail steps 
to generalize the final classification tree and find out the 
classification rules. Table I depicts a raw training data of 
education level in relation with the merit and skills.  
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Step 1 : Consider the student data as training data set 

TABLE I.  TRAINING DATA AS STUDENT DATA 

Step2: Perform generalization by AOI method  

Stid Degree 

% 

Age Back 

logs 

Company  

type 

AOI category 

100 75 20 0 software 
Higher 

studies 
Yes 

101 72 20 1 software job No 

102 69 21 0 Software job Yes 

103 60 20 2 core 
Higher 

studies 
yes 

- - - - - - - 

TABLE II.  GENERALIZED TRAINING STUDENT DATA 

The design procedure is implemented with the real world 
information about a study on educational campus and its 
placements criteria. In this regard, we started with a flowchart 
how the generalization of a large dataset can be done and it is 
depicted above in Table II. 

Figure1 shows the proposed flow diagram to study and 
perform classification on large dataset. 

 

Figure 1.  Proposed Flow chart representing classification on large Dataset 

The training data is compressed with the storage of the 
generalized data which is done in two phases by attribute-
oriented induction and multilevel induction. 

Attribute-oriented induction is a knowledge discovery tool 
which allows the mining of large databases. Firstly, it allows 
the raw data to be handled at higher conceptual levels. 
Generalization of the training data is achieved by replacing 
primitive level data by higher level concepts. This induction 
method allows the user to view the data at more meaningful 
abstractions which optimizes the scalability issue by 
compressing the training data. After generalization, the training 
data will be much more compact than the original training data 
and still involves fewer input/output operations. Sometimes 
generalization involves removal of attributes without affecting 
the original database which further compresses the bushiness of 
the resulting trees.  

To represent the data in user’s view, the attribute-oriented 
induction results in classification trees that is more 
understandable, smaller, and easy for interpreting sets of low-
level data. The degree of generalization is controlled by 
generalization threshold. Multilevel induction is the last step in 
generalization which combines the data from different levels of 
abstraction obtained by attribute-oriented induction with the 
knowledge stored in the hierarchies. Once a decision tree has 
been derived, the concept hierarchies can be used to generalize 
individual nodes in the tree and can reclassify data for the 
newly specified abstraction level.  

The main idea of this paper is to construct a decision tree 
based on these proposed steps and prune it accordingly. The 
basic Decision Tree Construction Algorithm 1 is shown in 
Figure II, which constructs a decision tree for the given training 
data. Decision trees are data mining technology that has been 
around in a form very similar to the technology of today for 
almost twenty years now and early versions of the algorithms 
date back in the 1960s.  Often times these techniques were 
originally developed for statisticians to automate the process of 
determining which fields in their database were actually useful 
or correlated with the particular problem that they were trying 
to understand.  

Algorithm 1: Decision Tree Construction  

DecisionTree (Node n, DataPartition D)  

{  

Apply AOI-Method to D to find  

splitting-criterion of node n  

Let k be the number of children of n  

if k>O do  

Create k children c1, c2,..., ck of n  

Use splitting-criterion to partition D into D1,  

D2..., Dk  

for i = 1 to k do  

DecisionTree(ci, Di)  

end for  

end if  

Assign priority to the nodes based on the level; 

} 

Figure 2.  Decision Tree  

Stid UG 

/PG 

Previous 

history  

of study 

based on 

merit 

age Bac

k 

logs 

if 

any 

Company 

 type 

AOI Cate 

gory 

100 UG B.Tech 20 0 software 
Higher 

studies 
Yes 

101 UG B.Tech 20 1 software job No 

102 UG B.Tech 21 0 Software job Yes 

103 UG B.Tech 20 2 Core 
Higher 

studies 
yes 

- - - - - - - - 

generalization 

Test 

node 

testno

de 

testno

de 

no yes no yes 

Trainin
g 

data 

stop 

start 
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Step 3 : Data has to be mined at different levels for the users to 

view multiple abstractions of data. 

 
Figure 3.  Decision Tree Construction for the Training Data   

The Table III shows the selected data among the training 
data for placement of students in terms of quality and stability. 

Stid Company type Class Label 

102 Software Yes 

- - - 

TABLE III SAMPLE OUTPUT OBTAINED FROM THE TRAING DATASET 

V. DECISION TREE METHOD WITH AVL TREES   

In this paper a decision tree is constructed based on the 
proposed steps and prune it accordingly and is shown in section 
IV, which constructs a decision tree for the given training data. 
Furthermore, once a decision tree has been derived with the 
proposed decision tree creation algorithm, the tree is formed as 
shown in Figure 3 with the concept hierarchies that can be used 
to generalize individual nodes in the tree and can reclassify 
data for the newly specified abstraction level. 

Therefore, we proposed an algorithm called Node Merge, 
which allows merging of nodes in the tree thereby discouraging 
over- partitioning of the data. This algorithm also uses the 
concept of Height-Balancing in the tree using AVL trees 
depending on the priority checks for every node. This enhances 
the overall performance and final decision tree constructed is 
efficient enough to derive the classification rules effectively. 

Algorithm 2 : Node Merge 

Node_Merge( Node Data_A, Node Data_B)  

{  

Check priorities for node _A and node _ B;  

if both the priorities > checkpoint then  

{  

Link _AB = remove _ link_ joining (Node Data _ A,  

Node Data _B);  

union = Node Data _ A. merge _with(Node Data _ B);  

for (related node: nodes _ incident _to _either (Node Data _ A, 

Node Data _B))  

link _RA = link _ joining (related _node, Node Data _ A);  

link _RB = link _joining (related _ node, Node Data _ B);  

disjoin (related _ node, Node Data _ A);  

disjoin (related _ node, Node Data _ B);  

join (related _ node, union, merged _ link);  

}  

else print (Node have high priority, cannot be merged);  

Figure 4.  Decision tree construction 

 

Algorithm 3 : To perform height balance 

Perform _ balance _height (union, link _AB)  

1.Check the tree obtained is in balanced. 

2. if found then check the balance factor of the left/right sub 

tree is heavy on left /right  

3. if tree’s right sub tree is heavy ―left‖ then perform double 

―left‖ rotation else 

                                   Perform single ―left‖ rotation 

4. if tree’s left sub tree is heavy ―right‖ then perform double 

―right‖ rotation else 

                                   Perform single ―right‖ rotation 

5.Check for path preservations 

Figure 5.  Height-Balancing using AVL Tree Concept  

This algorithm also uses the concept of Height-Balancing in 
the tree using AVL trees depending on the priority checks for 
every node. This enhances the overall performance, as the final 
decision tree constructed is efficient enough to derive the 
classification rules effectively.  

Right-Right case and Right-Left case: when the balance 
factor of R is found as -2 , then the ―right‖ sub tree is heavier 
than the left sub tree of the given node and it needs to be 
balanced by checking the balance factor, r of the right child. If r 
is less than zero then apply single left rotation with respect to R 
as root. If r is +1 then apply double left rotation (first rotation 
will be right as r as root and second rotation is a left rotation as 
R as root)  

Left-Left case and Left-Right case: when the balance factor 
of R is found as +2 , then the ―left‖ sub tree is heavier than the 
right sub tree of the given node and it needs to be balanced by 
checking the balance factor, r of the left child. If r is greater 
than zero then apply ―single right‖ rotation with respect to R as 
root. If r is -1 then apply ―double right‖ rotation (first rotation 
will be left as r as root and second rotation is a right rotation as 
R as root). This approach is shown in Figure 6. 

 

Figure 6.  AVL Tree Right and Left single rotations  

The final Decision Tree is constructed by using the above 
Algorithm 3, Balance Height. From the figure 7, it is clear that 
tree is well constructed and also balanced at every node. 

As mentioned in the algorithm, the path to different levels 
are updated and preserved accordingly. In this way improved 
scalability and efficiency of the data classification with 
Decision Tree enhancement. 
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Figure 7.  Final decision tree with AVL tree concept  

VI. EXTENSIONS AND CONCLUSIONS  

 
This paper proposes a approach for classification using 

Decision Tree Induction and it clearly shows how the algorithm 
generalizes the concept hierarchies from the training data by 
attribute-oriented induction (AOI). By generalization of the 
training data, it minimizes the requirement of the training data 
and makes the decision tree result meaningful using the AVL 
trees concept. The proposed algorithm provides a general 
framework that can be used with any existing Decision Tree 
Construction algorithms. In an effort to identify and rectify the 
restriction that limits the efficiency and scalability of other 
algorithms, we have proposed an efficient yet simple solution 
which will overcome them. Our future work involves further 
refinement in different applications of the proposed algorithm.  
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Student Id 

Backlogs 

(<=1) or (>1) 
% Secured 

(>=60) or (<60) 

Company type 

( s/w or core ) 
Area of interest 

(higher studies / job) 
Age 

(<=24)or (>24) 
Reservation 

Category (y /n) 

CSE 
/IT 

/ECE 

Mech 
/Civil 
/EEE 

No  Yes Yes No Yes No 


