
108

Extensible Database Communication Modification
Framework

Pinaet Phoonsarakun
The Sirindhorn International Thai-German Graduate

School of Engineering, King Mongkut's University of
Technology North Bangkok

Bangkok, Thailand
pinaet@gmail.com

Alexander Adam
dimensio informatics GmbH

Chemnitz, Germany
alexander.adam@dimensio-informatics.com

Kamol Limtanyakul
The Sirindhorn International Thai-German Graduate

School of Engineering, King Mongkut's University of
Technology North Bangkok

Bangkok, Thailand
kamol.l.sse@tggs-bangkok.org

Wolfgang Benn
Chemnitz University of Technology

Chemnitz, Germany
benn@cs.tu-chemnitz.de

Abstract— Current databases use many different protocols to
communicate with their clients. Applications running on that
communication protocols have to implement support for each of
them. In this paper, we propose an abstraction layer, that enables
an application to be applicable to many database protocols, such
as the database protocol TNS for Oracle database, TDS for
Microsoft SQL Server, DRDA for IBM DB2, and so on, using
only one abstract interface. On this layer, there will be various
primary abstract functions that database protocol applications
can customize or integrate them for their own particular
purposes, such as SQL rewrite, analysis, timing, result set cache,
direct generation of result sets, intrusion detection, etc. The aim
of this paper is to develop and propose this abstraction layer.
Finally we show some examples of applications utilizing the
proposed abstraction layer, they are able not only to perform
SQL rewrite and timing, but also support the database protocol
TNS, TDS, and DRDA.

Keywords— abstraction layer, database management systems,
SQL, database protocol, TNS, TDS, DRDA

I. Introduction
Computer technology helps humans to calculate things and

obtain the results extremely quickly and accurately. The
technology is then used and applied to enhance many aspects
of human activities, such as entertainment, education,
exploration, communication, industrial production,
transportation, business, finance, etc. In doing that, a large
amount of data needs to be managed properly and securely,
especially when data need to be exchanged between devices
from great distances. This is why database management
systems and computer network communication and security
have become important, to help technology deal with data
exchange and management. On the market, there are many
database management systems (DBMS) available, e.g. Oracle
database [1], Microsoft SQL Server [2], IBM DB2 [3][4], etc.,
and each of them uses its own database protocol, which
possesses syntax and semantics as the rules for the data

exchange and management between devices, database clients
and servers.

Also there are many APIs (application programming
interfaces) and abstractions available and some of them are
able to support most of DBMS vendors, e.g. JDBC [5] (java
database connectivity) and ODBC [6] (open database
connectivity) can support Oracle database, Microsoft SQL
Server, IBM DB2, etc. These APIs and abstractions are
provided only at the application level.

At the network level, there are specialized tools for
particular purposes but they are all specific to some database
protocol(s) and do not provide any common API or
abstraction, as detailed more in the section Related Work.

Therefore, there is currently no abstraction layer for all
database protocols at the network level. Once there is such an
abstraction layer, it will enable database protocol applications
to support many database protocols, e.g. TNS (transparent
network substrate) [1] for Oracle database, TDS (tabular data
stream) [2] for Microsoft SQL Server, DRDA (distributed
relational database architecture) [3] [4] for IBM DB2, etc. In
this abstraction layer, there will be various primary abstract
functions concerning events of database communication, from
connection until disconnection. Database protocol applications
can customize or integrate these abstract functions for their
own particular purposes, such as SQL rewrite, analysis,
timing, intrusion detection, result set cache, direct generation
of result sets, etc. The design of the abstraction layer is shown
in Fig. 1.

The abstraction is also necessary for an application that
wishes to be integrated into existing IT systems without
modifying any code of database client or server. One example
use case of the abstraction is SQL rewrite which has the
purpose to accelerate database response time, as illustrated in
Fig. 2. There will be an extra delay belonging to the SQL
modification. By the improvement of response time, the delay
can become less significant. Furthermore, with the abstraction,

Proc. of the Second Intl. Conference on Advances in Information Technology — AIT 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5939-1 doi:10.3850/ 978-981-07-5939-1_47

109

the SQL modification will have more potential for different
database protocols.

Figure 1. The abstraction layer design

Figure 2. The SQL modification at the network level

Therefore, the goal of this paper’s work is to develop and
propose an abstraction layer for database protocols at the
network level and analyze its performance.

II. Related Work
One language used for storing, retrieving, or manipulating

data in relational databases is the SQL (structure query
language). Analyzing and modifying SQL statements to
optimize them can accelerate the information search process
[7].

As mentioned in the introduction, there are APIs and
abstractions that can support many relational databases, such
as JDBC and ODBC, but they all are at the application level.

At the network level, there are specialized tools that can
do some tasks but they are all specific to some database
protocol(s), as described in the following.

TDS protocol analyzer [8] is specified for the database
protocol TDS, which is used by Microsoft SQL Server. It has
several features which include packet capture, packet analysis,
packet storage, traffic statistics, and vulnerability warning.

GreenSQL [9] is specified for database protocols of
relational databases MySQL and PostgreSQL by its open
source version. It is also available for the TDS protocol in its
commercial version [10]. This tool has several features, such
as a firewall, filtering SQL statements with malicious intent
against the database server, e.g. SQL injection vulnerabilities.

Security Testing Framework [11] is specified for the
database protocol DRDA. It is used to test the database
protocol by violating the syntax rules and semantics of the
protocol.

Furthermore, the tools do not provide any common API or
abstraction layer.

Consequently, for the work presented in this paper, it was
decided to bring an abstraction layer onto the network level on

top of database protocols, as shown in Fig. 1. On the
abstraction layer, there are various abstract functions. All of
these functions are based on C/C++ programming language.

The work presented in this paper used a network proxy to
access network traffic to analyze and understand the database
protocol used between a database client and the database
server.

III. The Abstraction Layer for
Database Protocols

In Fig. 1, the abstraction layer will have various abstract
functions. These functions are generalizations that arise from
broad similarities of all database protocol modules and will be
called or invoked by one of the modules when the right event
is met with the right parameter(s), to perform some specific
tasks. These functions are callback functions and virtual, thus
not implemented. They have to be overloaded to do something
more useful/application specific/else. They are defined as
standardized interfaces to cooperate with the lower layer. This
makes it easier to change the implementation of the
functionality provided by the layer. Moreover, the remainder
of the system remains unchanged when a layer's
implementation is changed as long as the layer provides the
same functionality to the layer above it, and uses the same
functionality from the layer below it.

A. Abstract Functions
In the whole process of data query between a database

client and the database server, there are generally five phases,
i.e. query preparing (prep), binding (bind), execution (exec),
result set fetching (fetch), and closing (free), as shown in Fig.
3. The arrows to the right are client part and the opposites are
server part. Abstract functions on the abstraction layer are
based on the whole process.

Figure 3. The whole process of data query

On the abstraction layer, the primary abstract functions
listening to the DB client side are detailed in Fig. 4.

Figure 4. The primary abstract functions listening to DB client

Proc. of the Second Intl. Conference on Advances in Information Technology — AIT 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5939-1 doi:10.3850/ 978-981-07-5939-1_47

110

 onConnect will be called or invoked with the parameter
clientPort when a database protocol module detected a
connection attempt.

 onPrep will be invoked with the parameters when a
database protocol module detected a phase of query
preparing from client. This function allows an application
to rewrite the SQL statement in a DB protocol packet by
using the parameter sql. The parameter stmtId is used
to refer to the SQL statement for the whole query process.
The parameter stmtType indicates the type of the SQL
statement whether it is a normal statement or prepared
statement, etc.

 onBind will be invoked with the parameters when a
database protocol module detected a phase of query binding
from client. This function allows an application to modify
values of the binding variables in a DB protocol packet by
using the parameter bVar. The parameter stmtId
indicates which SQL statement the binding variables belong
to.

 onExec will be invoked with the parameters when a
database protocol module detected a phase of query
execution from client. The parameter stmtId indicates
which SQL statement is going to be executed. The
parameter stmtIdType indicates the type of stmtId
whether it is depending on onPrep or onExecDb. If the
stmtIdType is the latter, the stmtId must be replaced
by the stmtId of the very first onExecDb event (note
that onExec and onExecDb are not the same function).
Otherwise the stmtId will be stuck to the onPrep event
until it is closed by the onFree or onFreeDb event. In
most cases, stmtIdType is depedning on onExecDb.
The parameter service allows an application to use some
special service from the database protocol module. The
application returns service valued 0 for no special
service; valued 1 in order to let the module to cache all
result sets of the SQL statement and reply all of the result
sets when found the same SQL again; valued 2 in order to
generate direct result set independently from database;
valued 3 to block the execution. If service is set to 2, the
abstract function onAnsDir will be invoked to supply the
service.

In some cases, events onPrep, onBind, onExec can be
combined into one DB protocol packet, but not in separate
packets, a TDS packet with ProcID 13, namely
"Sp_PrepExec", for instance. Therefore the events onPrep,
onBind, and onExec will be invoked consecutively by such
one DB protocol packet.

 onFetch will be invoked with the parameter when a
database protocol module detected a phase of query result
set fetching from client. The parameter stmtId indicates
which SQL statement is going to fetch more result sets.

 onFree will be invoked with the parameter when a
database protocol module detected a phase of query closing
from client. The parameter stmtId indicates which SQL
statement is going to be closed or has been already closed.

On the abstraction layer, the primary abstract functions
listening to the DB server side are detailed in Fig. 5.

Figure 5. The primary abstract functions listening to DB server

 onPrepDb will be invoked with the parameter when a
database protocol module detected a phase of query
preparing from server. The parameter stmtId indicates
which SQL statement this event belongs to.

 onBindDb will be invoked with the parameter when a
database protocol module detected a phase of query binding
from server. The parameter stmtId indicates which SQL
statement this event belongs to.

 onExecDb will be invoked with the parameters when a
database protocol module detected a phase of query
execution from server. The parameter stmtId indicates
which SQL statement the result set belongs to. This
function allows an application to modify the result set from
database by using the parameter resultset.

In some cases, events onPrepDb, onBindDb,
onExecDb can be combined into one DB protocol packet, but
not in separate packets. For instance, if a client sends a TDS
packet with the ProcID 13 to the DB server, the events
onPrepDb, onBindDb, onExecDb will be invoked
consecutively by such one DB protocol packet afterwards.

 onFetchDb will be invoked with the parameters when a
database protocol module detected a phase of query result
set fetching from server. The parameter stmtId indicates
which SQL statement the result set belongs to. This
function also allows an application to modify the result set
from database by using the parameter resultset.

 onFreeDb will be invoked with the parameter when a
database protocol module detected a phase of query closing
from server. The parameter stmtId indicates which SQL
statement has been already closed.

 onAnsDir will be invoked with the parameters if the
returned value of service of the last onExec event is set
to 2, in order to supply the service of generating direct
result set, independently from database. An application will
have to provide the result set for the generation by using the
parameter resultset. The parameter stmtId indicates

Proc. of the Second Intl. Conference on Advances in Information Technology — AIT 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5939-1 doi:10.3850/ 978-981-07-5939-1_47

111

which SQL statement the generating result set will belong
to.

 onDisconn will be invoked with the parameter when a
database protocol module detected a disconnection. The
parameter clientPort indicates which client port the
disconnection belongs to.

The struct variables CBindVar and CResultSet can be
found in the Appendix in [12].

The abstract function that is used to inform matters to an
application is shown in Fig. 6.

Figure 6. The abstract function for an exception event

 onException will be invoked with the parameters when
the lower layer of the abstraction layer needs to inform an
application about matters concerning warnings, errors, or
the output that the application returned to a DB module
does not meet a DB protocol standard, for example, the
length of SQL statement is too long, Oracle database is not
able to support the length greater than 4000 characters, etc.

IV. Result
The paper's work separates tests into two groups. All

integrations in this section base on the abstract functions from
subsection 3.1 in this paper.

The databases used for both test groups are Oracle
database version 11g, Microsoft SQL Server version 2008, and
IBM DB2 version 10. The computer specification is as
follows: CPU: Intel(R) Core(TM) i5 CPU 660 @ 3.33
GHz, RAM: 4 GB DDR3 Speed 1333 MHz, HD: 500 GB, OS:
Linux Debian Squeeze.

The first test group used data for the tests as shown in
Table 1.

Figure 7. The SQL timing analysis concept

One possible use case is SQL timing. Its purpose is to
optimize SQL statements, known as SQL tuning [13], through
monitoring and measuring SQL performance. The SQL timing
analysis concept is shown in Fig. 7. The two abstract functions
in Fig. 8 are provided on top after integration of all abstract
functions in the subsection 3.1, except onDisconn and
onAnsDir. An SQL timing application integrated the two

abstract functions, then was tested with the Microsoft SQL
Server, and had the result as follows.

RequestDataPacket:
0x0301017d0000010016000000120000000200000000000000000001000000ffff0d00

02000001260404ffffffff0000e758000904d000005800400076005f006e006f002000

69006e0074002c00400076005f006e0061006d00650020006e00760061007200630068

0061007200280032003800300029002c00400076005f00740061007800200066006c00

6f00610074000000e788000904d000008800530045004c0045004300540020002a0020

00460052004f004d00200045004d005000200057004800450052004500200065006d00

70006e006f003d00400076005f006e006f00200061006e006400200065006e0061006d

0065003d00400076005f006e0061006d006500200061006e0064002000740061007800

3d00400076005f0074006100780005400076005f006e006f0000260404870300000740

0076005f006e0061006d00650000e730020904d00000120041006c006500780061006e

0064006500720006400076005f00740061007800006d08080000000000e05240

 Client Port: 1053

 Timestamp: 1357424616.111147

 Time Calls: req_SP_PREPEXEC

 Statement ID: 0

 SQL: SELECT * FROM EMP WHERE empno=@v_no and
 ename=@v_name and tax=@v_tax

 BindingVariable: @v_no=903 @v_name=Alexander @v_tax=75.5

ReplyDataPacket:
0x040100ac00340100810400000000000800380565006d0070006e006f000000000009

00af0a000904d000000565006e0061006d006500000000000900280868006900720065

0044006100740065000000000009006d0803740061007800d1870300000a00416c6578

616e64657220039b2e0b080000000000e05240ff1100c1000100000000000000790000

0000ac0000000100000000000026040401000000fe0000e0000000000000000000

 Client Port: 1053

 Timestamp: 1357424616.115147

 Time Calls: ans_SP_PREPEXEC

 Resultset: empno | ename | hireDate | tax
 903 | Alexander | 01-Jun-07 | 75.5

 Statement ID: 1

ResponseTime: 4000 (usec)

Note that the ResponseTime is from the subtraction of
Timestamps.

TABLE I. EMP TABLE

EMPNO ENAME HIREDATE TAX
901 Martin 01-FEB-06 70.5
902 Andreas 01-MAR-06 70.5
903 Alexander 01-JUN-07 75.5
904 Dirk 01-DEC-08 70.5
905 Hartmut 01-MAY-09 50.5

Figure 8. The abstract functions for SQL timing after integrated the primary
abstract functions

Another possible use case is SQL rewrite. Rewriting a
SELECT statement in SQL can speed up the search process
[14]. By doing this, indexes are used in the WHERE clause
[15], as shown in Fig. 9. This SQL rewrite application
integrated mainly three abstract functions from the subsection
3.1, that are onPrep, onBind, and onExec. After the
abstraction integration, the SQL rewrite application was tested
and able to rewrite SQL statements in network traffic.

Proc. of the Second Intl. Conference on Advances in Information Technology — AIT 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5939-1 doi:10.3850/ 978-981-07-5939-1_47

112

Moreover, it was tested with the three databases with different
SQL statement lengths varying from 43 to 3,985 characters to
analyze the performance of each DB protocol module of the
abstraction, as shown in Fig. 10. The length was increased by
adding more conditions in the WHERE clause. The delay was
measured by subtracting the timestamp at a data packet arrived
at a DB protocol module and the timestamp at the data packet
released from the module. The delay of each length was the
average delay of repetition 40,000 times. The graphs can be
seen that delay increases dramatically and they are the same in
all DB protocol modules.

One real use case is to rewrite SQL statements with the
Intelligent Cluster Index [15], shown in Fig. 9. The test was
conducted with Oracle database version 11g. The table size
after the table join condition of the SQL statement [12] was
59,986,052 records. The connection without the database
external index took 32.106 seconds, while the connection with
the external index took 0.05 second and the delay in average
was 479 microseconds. The factor of improvement was 642
faster. We integrated the primary keys of Oracle database's
results into the query as an additional WHERE-condition. The
database first used these primary keys and evaluated the rest of
the conditions afterwards. So the amount of data was reduced
before the expensive tests were made.

Figure 9. The SQL rewrite with indexing overview

Figure 10. The relational graph testing of SQL length and delay of each DB
protocol module

V. Conclusion
The work presented in this paper has designed and

developed an abstraction layer at the network level on top of
the database protocols TNS, TDS, and DRDA. Moreover the
abstraction can be extended to support further database
protocols easily. On the abstraction, there are various abstract

functions based on the whole process of data query between a
database client and the database server. These functions will
be integrated into further database protocol applications, such
as SQL rewrite, timing, analysis, intrusion detection, result set
modification, result set cache, direct generation of result sets,
etc. Also the paper’s work has developed an abstraction
integration for SQL timing and rewrite. The SQL timing
integration is able to provide information for further SQL
analysis. The SQL rewrite integration is able to modify SQL
statements with various lengths and even provides the
integration of a database external index. The influence of the
abstraction layer is acceptable for SQL statement lengths
below 2048.

The challenges that this paper’s work has encountered
were that in some cases all database protocols could not fit
together completely, e.g. statement ID type in the abstract
function onExec, and the lack of TNS documentation.

The future works of this paper are to extend the database
protocol module to support further database protocols, such as
MySQL, PostgreSQL, etc., and develop all of the modules to
fully supply all of the abstract functions. We will also further
analyze and improve performance of each DB protocol
module.

References
[1] D. Litchfield, The Oracle Hacker's Handbook: Hacking and Defending

Oracle. John Wiley & Sons, 2007.

[2] [MS-TDS] Tabular Data Stream Protocol Specification. Microsoft
Corporation, December 14, 2011.

[3] DRDA V5 Vol. 1: Distributed Relational Database Architecture
(DRDA). The Open Group, July 2011.

[4] DRDA V5 Vol. 3: Distributed Data Management (DDM) Architecture.
The Open Group, July 2011.

[5] R.M. Menon, Expert Oracle JDBC Programming. Apress, 2005. ISBN:
978-1590594070.

[6] Robert Signore, John Creamer, Michael O. Stegman, The Odbc Solution:
Open Database Connectivity in Distributed Environments. Mcgraw-Hill,
1995. ISBN: 978-0079118806.

[7] D. K. Burleson, Oracle Tuning The Definitive Reference. Krittell, North
Carolina, United States of America: Rampant, 2005.

[8] L. Guo and H. Wu, "Design and Implementation of TDS Protocol
Analyzer," in Computer Science and Information Technology, 2009.
ICCSIT 2009. 2nd IEEE International Conference., 2009, pp. 633-636.

[9] (2012) GreenSql. [Online]. http://www.greensql.net/

[10] (2012) Product Overview. [Online]. http://www.greensql.com

[11] M. AboElFotoh, T. Dean, and R. Mayor, "An Empirical Evaluation of a
Language-Based Security Testing Technique," 2009.

[12] P. Phoonsarakun, "Framework for SQL Modification and Analysis,"
Master's Thesis, The Sirindhorn International Thai-German Graduate
School of Engineering (TGGS), King Mongkut's University of
Technology North Bangkok (KMUTNB), Bangkok, 2012.

[13] J. Goodson and R. A. Steward, The Data Access Handbook: Achieving
Optimal Database Application Performance and Scalability. Prentice
Hall, March 2009.

[14] A. Abbasi, Oracle 10g Database Administration Concepts and
implementation Made Simple. 2008.

[15] S. Leuoth, A. Adam, and W. Benn, "Profit of extending standard
relational databases with the Intelligent Cluster Index (ICIx)," in Control
Automation Robotics & Vision (ICARCV), 2010 11th, Singapore, 2010,
pp. 1198-1205.

Proc. of the Second Intl. Conference on Advances in Information Technology — AIT 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5939-1 doi:10.3850/ 978-981-07-5939-1_47

