

16

Subversion(r): Empirical Design Methodology from
the Perspective of Integrated Circuit Design

Radoslav Prahov, Holger Schmidt and Achim Graupner
Zentrum Mikroelektronik Dresden AG

Dresden, Germany
{radoslav.prahov, holger.schmidt, achim.graupner}@zmdi.com

Abstract—An aspect of primary significance in integrated
circuit (IC) design is configuration management of design data,
i.e., the task of keeping a project comprising a multiplicity of
revisions well organized. Apache’s Subversion(r) is a software
tool that can facilitate this task. It manages revisions of
documentation, source code, and a wide variety of files, and it
automates storing and retrieving revisions. Unfortunately,
Subversion(r) provides insufficient support for IC projects
consisting of large numbers of managed items. We address this
problem by introducing, discussing, and demonstrating several
approaches that improve the performance of Subversion(r) when
handling a vast amount of files and directories. Our approaches
are division of the working copy into smaller pieces with a decent
granularity, conversion of the working copy into a single tarball
file, and implementation of a referred central working copy. Each
method is incorporated into the configuration management flow
through a lifecycle of IC development, which offers the
opportunity to compare and validate each technique.

Keywords—configuration management, Subversion, design
methodology, performance.

I. Introduction
With the ongoing requirements for accomplishing higher

productivity and quality while ensuring effective control
before, throughout, and beyond the integrated circuit (IC)
development process, configuration management (CM) of
design data has become an important aspect of modern IC
projects. Its role is to assist designers by controlling, tracking
and coordinating every single change that occurs in the file
system during a project lifecycle by gathering evolutionary
revisions [1]. This allows users to perform unlimited updates
to the project information, but at the same time, they can be
assured that each user has the latest version. Users with an old
version have the ability to either update their working copy to
the most recent version or continue employing their old one
and propagate their changes afterwards. Conversely, users
with a head version (the version presently designated as most
current) can check out a previous version; for example, for
comparison if anything regresses. Changes during IC projects
could have a diverse character. Beyond basic file
modifications, they may also involve adding, removing, or
updating directories; modifying the hierarchy; altering group
permission and file and directory ownership; and renaming
files and directories [2],[3].

Although automated support for CMs has existed for over
thirty years, its prominence in the framework of IC design has
sharply increased during the last decade [4]. Early automated
support tools suffered from inadequate functionality and
applicability. In contrast, modern tools offer advanced utilities
and features [5]-[8]. Despite the evolution from simple tools to
comprehensive environments, automated support for the CM
is still confronted with challenges due to the advent of new
innovations and technologies [9]. One such challenge is the
ever-increasing complexity of IC projects [10]-[12]. For
instance, because of the more complex verification flows with
every new IC generation and process node, IC projects tend to
comprise ever-growing design data.

As the most prominent CM tool, Apache’s Subversion®
(SVN) must respond to the trend toward more complex IC
designs with higher file counts. However, it has a deficit when
it comes to dealing with great numbers of managed items, as
its efficiency proportionally degrades with a growing quantity
of files and directories [13]-[15]. In addition to breaking a
tool’s environment, this leads to unacceptably long operation
times. Even in projects with average complexity, this is a
severe issue. In the majority of cases, the increased operation
time drags down productivity because the longer waiting time
cannot be used effectively. Reducing it not only accelerates
the IC design process, but also lowers the stress level for the
project’s IC developers.

The present study was designed to evaluate different
approaches that could adapt SVN to handling a vast quantity
of files and directories more efficiently. The approaches were
incorporated into the CM and were employed during the
lifetime of an IC design project. The effect on SVN is
compared, and the improvement is defined in this study.

The remainder of this paper is organized as follows. In
section II, a concise evolutionary history and features of SVN
are introduced, related work is presented, and challenges of
migrating from one CM tool to another are identified. This is
followed by section III, where the problem of controlling a
multiplicity of files and directories is addressed, different
design methodology techniques that allow SVN performance
improvement are presented, and their implications for the
integrated circuit workflow architecture and revision control
system are discussed. Section IV explains the industrial
project into which the design methodologies were

Proc. of the Second Intl. Conf. on Advances in Electronics and Electrical Engineering — AEEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5939-1 doi:10.3850/ 978-981-07-5939-1_11

17

incorporated and presents an evaluation and discussion.
Section V concludes the paper.

II. Background
Since the advent of Concurrent Versions System (CVS),

initially as a set of shell scripts coded by Dick Grune (1986)
and later converted to a C program by Brian Berliner (1989)
[16], CVS has become one of the most prominent version
control tools, widely employed in various projects. Even now,
over two decades later, it is the second most widespread tool
in terms of market share (13%) [17]. During this extensive
period of development and usage, its benefits were identified;
however, substantial problems emerged. Hence in 2000, a
group including former CVS developers launched SVN, a
version control tool explicitly intended to be a successor of
CVS with a similar design and improved functionality [18]. Its
first official release arrived in 2004. At present, SVN is the
most widespread version control tool, with a market share of
51% [17].

A. SVN
SVN’s repository core is the storage backend where all

versioned data are stored. Each time a client successfully
commits certain changes, the SVN repository creates a new
snapshot of the versioned file-system tree, called a revision or
version. An increasing, unique number globally identifies each
version. The snapshot contains the revision directory structure,
file meta-data, and file contents, which might be delta
compressed to save space. The delta compression keeps only
the differences between successive versions of files. To
retrieve a specific file revision, SVN composes a sequence of
deltas up to the last full version. Because searching through all
file revisions is time-consuming, full versions called skip-
deltas are inserted between deltas.

On the client side, for each file in the working copy, a
pristine copy, the revision number (on which the local file is
based), and the timestamp of its last update are stored. The
pristine copy allows using several commands without any
repository interaction: checking file status, comparing files
with their unmodified version (svn diff) and restoring contents
(svn revert). Committing changes from the client’s working
copy to the repository does not trigger a synchronization of
other locally unmodified files. Thus, after committing a subset
of the working copy, it is left in a mixed-revision state;
therefore, the base revision number must be tracked for every
file and directory. To reproduce all upstream changes, the svn
update command pulls all changes, optionally only up to a
specified revision. Local modifications are automatically
reintegrated, and the usual conflict-resolution workflow is
applied.

SVN supports branching, merging, and tagging using an
additional directory layer in the repository hierarchy; typically,
main development happens in the trunk, while development of
branches and tagged versions reside in corresponding named
directories. Since version 1.5 (2008), merge information is
automatically stored in the path meta-data (svn:merginfo).
This simplifies merging between branches and the trunk, as

parental relations are not naturally represented in the
repository tree structure. However, compared to most common
distributed version control systems, several merging issues
still remain ([18], cf. Chapter 4).

B. Problem Statement
Despite SVN’s dominant market share and improved

functionality, SVN often suffers from a performance
deficiency when it handles a multiplicity of managed items.
This is not actually recent news, nor an exclusive trait of SVN,
since the signs were first observed in ancestral CVS. In 1989,
prolonged times were recorded while CVS managed the
Prisma™ project by Prisma, Inc., which comprised over
17,000 files [19].

Subsequently the effect of escalated IC project complexity
upon the behavior of SVN was assessed in [13]-[15]. How the
system can be adapted to a multitude of files with a different
origin was presented in [14] by investigation of several typical
user cases. SVN performance limitations and suggestions for
how they can be overcome were also discussed. When
investigating sources of bottlenecks in SVN, the most
significant finding was the relationship between the number of
managed items and the execution time of SVN operations.
Furthermore, the relationship is quadratic for commit
commands and linear for add/checkout commands.

Taking into account all findings and results of the studies
mentioned above, the optimum effectiveness of SVN can be
achieved by keeping project data compact and locating the
repository and working copy in a RAM disk on a sufficiently
powerful machine with an adequately spacious cache area.
However, with the ongoing growth of IC project complexity,
the reduction of design data is hardly applicable. Even though
hosting the repository and working copies in a RAM disk has
proven to be the most efficient configuration [14], in our view,
it remains a theoretical technique with limited possibility of
application because in a considerable proportion of cases, the
required allocation of space is substantial. Furthermore,
implementing mandatory security measures, such as backup
and regular snapshots, is more complex. Another setback is
that job distribution techniques, such as using a load-shared
facility (LSF), which is widespread, cannot be employed.

Regardless of the flaws discussed above, a substitution of
the CM tool is often not an alternative and is hardly applicable
because of the CM’s tight integration into the design
workflow. For instance, in the project for Apache Software
Foundation’s OpenOffice™ (for which the repository
consisted of over 66,000 files), it was reported that various
tools and wrapper scripts, such as issue tracking,
authentication, and some tools specific to the project (EIS,
LION, etc.), had to be entirely redesigned [20]. Furthermore,
programs that were supplementary to the IC development
process (such as tools facilitating the design and SoC project
management and the GUI support tools) are only compatible
with specific CM tools, usually SVN and Perforce™
(trademark of Perforce Software, Inc.). Hence, in this work,
we address the SVN bottleneck and propose three approaches
that are capable of mitigating the SVN dependence on the
amount of managed items.

Proc. of the Second Intl. Conf. on Advances in Electronics and Electrical Engineering — AEEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5939-1 doi:10.3850/ 978-981-07-5939-1_11

18

III. Design Methodology
In the following section, three different techniques are

presented as each of them allows reducing the quantity of files
and directories that SVN handles per operation.

A. Division of the Working Copy into
Smaller Pieces with a Decent
Granularity (DM1)
The first proposal is based on division of the working copy

into smaller pieces with a decent granularity, organized in a
block-based hierarchy. In such a structure, each block can be
processed individually in parallel. In addition to parallelizing
the operations, this allows reducing the number of files to be
manipulated (submitted/updated) at once.

Putting this approach into practice can be achieved by
different methods. One method would be to divide the project
into as many various unit types as possible. A unit type
constitutes a heterogeneous, separate design part; for example,
a directory of a circuit block or sub-block. Different unit types
are generally limited by the character of the project data.
Therefore, a detailed verification under the project hierarchy
and design data might be needed for such architecture.

We chose to divide the data as shown in Fig. 1 and Fig. 2.
Since IC designs possess a decent granularity by nature, the
analog library depicted is suitable for dividing into its
heterogeneous subdirectories (bandgap, oscillator, and vref).
However, the effort of reorganizing existing projects should be
taken into consideration. Even so, this is one of the focal
advantages of the approach since the method can be employed
directly out-of-the-box for a substantial portion of IC designs.

B. Conversion of the Working Copy into
a Single Tarball File (DM2)
The basic principle of the approach introduced in [13] and

[14] is depicted in Fig. 3. The quantity of managed files and
directories is decreased by combining them into a tarball
archive, which accelerates SVN. Initially, this principle was
only proposed for binary files, for which the number of files
can be efficaciously reduced by two mutually complementary
means [13]. In the first case, the whole directory structure is
converted into one single monolithic block. For that purpose,
data that are to be imported into the repository are transformed
into one file via a simple tar operation and then the tar file is
uploaded to the repository. When the data must be accessed
(updated), the tar file is untarred and they are again available.
Since the revision control system is facilitated and does not
need to recursively deal with the initial directory structure, but
rather with just a single block, an acceleration of about 15
times was reported [13].

The second method takes the first case a step further by
compressing the single block. The process is essentially the
same, except that the tar file is compressed before being
uploaded to the repository. This could be done in various
ways; albeit, a simple and effective one is the standard

UNIXgzip command. Conversely, when the uploaded file has
to be accessed, it must also be decompressed. Due to the
compressed character of the block, an additional speed boost
and shrinkage of the space that is consumed on the server are
observed.

Since in [14] both principles were proven to be efficient,
not only for binary files, but also for a wide range of file
formats, the latter approach was implemented in the IC project
as shown in Fig. 4. The tar/compress and untar/decompress
steps were entirely automated due to their routine and
particularly error prone character.

Figure 1. Classical structure of analog library

Figure 2. Organization of analog library into smaller pieces with decent
granularity. Below level 1, each subfolder could be manipulated in isolation.

Files.tar

Files.tar.gz

Files

Project
Repository

Project
Repository

Project
Repository

15x

19x

1x
E

x
e

c
u

ti
o

n
 t

im
e

Figure 3. Three techniques for importing into the SVN repository: plain file
structure, simple tar file, and compressed tar file, with respective performance.

+- analog_library

| +- bandgap

| +- bandgap_resistors

| +- bandgap_amplifier

| +- tb_bandgap

| +- oscillator_20kHz

| +- oscillator_trimunit

| +- oscillator_schmitttrigger

| +- tb_oscillator

| +- vref_18

| +- …

+- bandgap_library

| +- bandgap

| +- bandgap_resistors

| +- bandgap_amplifier

| +- tb_bandgap

+- oscillator_20kHz_library

| +- oscillator_20kHz

| +- oscillator_trimunit

| +- oscillator_schmitttrigger

| +- tb_oscillator

+- vref_18_library

| +- vref_18

+- +- …

Proc. of the Second Intl. Conf. on Advances in Electronics and Electrical Engineering — AEEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5939-1 doi:10.3850/ 978-981-07-5939-1_11

19

Files

tar
compress

untar
decompress

Files.tar.gz

Project
Repository

commit update

Figure 4. Details of compressed tar file approach.

The first step was carried out in the sequence:

 Directory existence verification. This step verifies that
the directory that was selected to be manipulated
exists. If not, the sequence is terminated.

 SVN management validation. Whether or not the
specified directory is already managed by SVN is
validated. If SVN managed, the directory must be
erased from the SVN repository.

 Tar file existence verification. This step verifies
whether a tar file with an identical name exists. If so,
its content is compared against the specified directory.
If they are equivalent, the sequence is discontinued.
Otherwise, the step is executed and the tar file is either
brought into existence or updated.

The next step, untar/decompress, is executed on the
algorithm:

 Tar file update verification. Whether the tar file has
already been updated in the local directory structure is
verified. If not, the algorithm is terminated.

 SVN management validation. This step validates
whether the directory included in the tar file has
already been managed by SVN. If it is, the algorithm
is discontinued.

 Workspace tar content SVN management verification.
If the directory already exists in the user’s workspace
but it is not managed by SVN, it is automatically
removed. Next, the tar file is extracted.

The application of the automated transformation of the
initial data structure into a monolith block is not only to allow
eliminating all trivial tasks, but also to keep this relatively
error-prone phase protected.

C. Referred Central Working Copy
(DM3)
This approach differs from the others in that it involves

maintaining a central working copy for read-only access. A
data unit being designed within an IC project is generally

developed by a single engineer but at the same time is
referenced by others. Since a significant proportion of
elements in the user’s working space is not modified and not
directly employed (but elements still need to be referenced),
the elements can be referred to the central working copy
through soft links, whereas all developed elements remain in
the regular working copy.

Implementation of the structure presented above is
illustrated in Fig. 5. It consists of a three-level hierarchy,
adding an additional level to the conventional server-client
configuration traditionally employed by the revision control
system.

Importing (checking in) the design data to the repository is
performed with the standard method; i.e., the new structure
does not affect this process at all. When the data are to be
checked out, instead of being transferred directly from the
server to the client, they are initially copied onto a central
replication area and then the workspace is created. Each unit
from the workspace could either point to the replication area
as a soft link or could be represented physically. Soft links
have read-only access because blocks that are in the
replication area cannot be modified. If modification is
required, they must be transferred to the local workspace first.
Each block can be converted at any time, replacing a link with
local data and vice versa. The replication area cannot be
updated (for fixed revisions) in terms of replacing an old
version of a block with a newer one, but it can comprise more
than one revision of a certain block. Of course, all outdated
block versions could be removed once they are no longer
required. From the methodology description up to this point, it
could be inferred that the replication area behaves as a typical
second server, except that its data do not require being backed
up, as they can readily be recovered at any given moment and
they do not contain any modifications.

This approach has the prerequisites of block-oriented
design data structure and decent granularity, as discussed
previously for Fig. 2. This method smoothly allows each block
to be fetched into the working copy either as a soft link or as
physical data. For instance, blocks that are never employed
could be referred to the central working copy, whereas all the
others would remain part of the regular working space. This
measure also allows parallel processing and saves disk space.

The linked central working copy technique can be
implemented with different methods. One is to develop
proprietary scripts. However, especially in the field of IC
design, this tends to be limited by the ability of the
programmers who develop and maintain them (might lack
training or experience and might not be diligent). Furthermore,
scripts are relatively insufficiently flexible, and even a slight
environment alteration could trigger discrepancies and
inconsistencies, which are difficult to fix. Therefore, we chose
a tool available on the market for implementing the technique:
Methodics’ BuildIC

TM. It is an SoC assembly engine, part of a
platform for SoC design management [21]. However, we
consider it to be also beneficial for workspace management, as
it has a “shared area,” which has the identical functionality as
the replication area.

Proc. of the Second Intl. Conf. on Advances in Electronics and Electrical Engineering — AEEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5939-1 doi:10.3850/ 978-981-07-5939-1_11

20

Workspace

Block A r/w

Block C r/o

Block B r/o

Replication area

Block A

Block C.revY

Block B.revX

Repository

Block A

Block C

Block B

Figure 5. Schematic of the referred central working copy approach. Blocks that are not required in the user’s workspace are referred to the central working copy.

IV. User Case
The design methodologies that were described in the

previous section were incorporated into the CM workflow of
our ZSPM1000 Smart Power Management (SPM) IC project.
The ZSPM1000 is a configurable, true-digital single-phase
pulse-width-modulation (PWM) controller for high-current,
non-isolated DC/DC power supplies supporting switching
frequencies up to 1 MHz. It includes a PMBus™-configurable
digital power control loop that incorporates output voltage
sensing, average inductor current sensing, and extensive fault
monitoring and handling options. Project data comprised 48
blocks with a total of 50,000 files and a total size of 5.9GB.

A. DM2
Initially, DM2 was implemented from the foundation of

the project. According to the design team, this principle
allowed them to solve the SVN performance limitations;
however, the improved efficiency comes at a cost. The
application of SVN on a file level is not possible. Standard
features of revision control systems, such as file history,
revert, selective checkout and locking functionalities, are not
available.

Furthermore, changes between different revisions are not
traceable. For example, the following fundamental questions
for revision control systems cannot be answered. Which files
were changed? Who made the change? What was changed in
the file? What did the file contain in a particular revision? All
difference comparison futures are inevitably lost. The
graphical user interface support, which is one of the focal
advantages of SVN, is no longer efficacious.

In our efforts to address these issues, a policy of extensive
commit messages was put in force. Nonetheless, we rapidly
came to realize that this hardly helps when design teams are
spread over different locations. Even so, in our experience, the
issue can be avoided if an intellectual property (IP) project
design is employed. An IP constitutes a standard functional
block that is part of the IC but was developed separately from
the project either internally or sourced by a third party. During
the design phase, IP blocks are immutable. As such, they are

suitable for tar and untar because of the infrequency of
modifications to them.

Another hurdle is the extra step of transforming the initial
data into a single block. This should be considered a critical
phase, due to its routine and error prone character. A possible
solution is an automation of the process of handling the data
with a wrapper script. Although application of the automation
script mitigates the problem, it should still be considered
critical. By presumption, any directory with a name equivalent
to the content of the tar file is deleted because we determine
that by and large, it is left from any preceding execution;
however, the folder might contain important, modified, but not
yet committed project data as well. Moreover, due to the
development and maintenance of scripts, a further level of
complexity is added to the project design flow.

B. DM3 and DM1
Due to the drawbacks identified in DM2, an alternative

combined DM3 and DM1 CM workflow was integrated into
the ZSPM1000 project. The workflow achieves an improved
performance compared with DM2. This can be explained by
the parallel algorithm in which operations are performed.

When the same operation is executed in a sequential
manner, the replication area is only composed during the first
execution and reused later. Hence, the most rapid execution
time is achieved when the replication area has already been
brought into existence because of the minimal time that is
required for establishing soft links.

In contrast, if the replication area does not already exist
and all units are required to be available in a local workspace,
the longest time is needed. However, in this project
experience, only a small number of blocks were required in
the users’ workspace for write access (locally). This reflects a
dedicated designer who needs to reference all blocks during a
project lifetime but modifies only a minority of them.

The improved performance is explained by the reduced
quantity of items that SVN handles (during checkout) per
operation and also by the parallel manner in which the
commands are executed. Furthermore, the establishment of
links is performed in very little time. It should be noted that in

Proc. of the Second Intl. Conf. on Advances in Electronics and Electrical Engineering — AEEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5939-1 doi:10.3850/ 978-981-07-5939-1_11

21

contrast to the tar-untar approach, all benefits of the revision
control system are preserved, which is a key asset of this
mixed technique.

Several inconveniences were explored during the lifetime
of the project however. Because of DM1, it is not possible to
use a single operation to atomically commit multiple blocks
that have been modified with related refinements because each
block must be managed separately (Fig. 3). It was reported by
the design team that although this slightly affects the revision
control tool history by adding further revision numbers for
each manipulation, it does not influence the workflow.
Additional feedback confirmed that the application of this
technique leads to significant performance improvement and
reduction of the amount of data per operation.

The replication area in DM3 does not particularly affect
the IC design workflow. It is not a critical element and does
not require any special maintenance measures. Even though
this area might be considered to consume extra disk space, it
actually saves space because the user’s working copies are
reduced in size. The central working copy can be updated
automatically by a post-commit script.

Nonetheless, the disadvantage of the automatic updating
mechanism is the alteration of files without prior notice; for
example, when a designer refers to a head revision of a given
block and that block has changed. As a result, the designer
would automatically be referred to the new head revision.
However, in addition to the discomfort of unexpected changes
in the working copy structure, this can lead to breaking the
environment; e.g., regressions and debug sessions, which
count on stable data. Hence, we chose to set up links to the
central working area for fixed revisions and to update them
when required.

V. Summary and Future Work
This paper has presented three different approaches that

adapt the CM tool Subversion® to dealing with a multiplicity
of managed items. Since each of the proposed approaches was
ingrained in an industrial IC project flow from “scratchpad” to
the final product, they were compared and validated in a
realistic environment.

The demonstrated methods will be particularly beneficial
in future IC design projects for which the revision control tool
would be stretched to its breaking point with the increased
quantity of project data.

Thus far we have mainly explored the design mythology
from the user’s perspective. Our next step in this research will
be to perform a performance case study. We are interested in
comparing the performance improvement of each technique.

Acknowledgment
The authors wish to thank the design team for the

ZSPM1000 project at ZMD AG for their technical assistance
and feedback during the lifetime of the project as well as Ms.
M. Wallace and Mr. D. Aitken for proofreading the
manuscript.

The work reported in this study was funded by the Seventh
Framework Program of the EC under grant agreement no.
237955 (FACETS-ITN).

References
[1] 828-2012 – IEEE Standard for Configuration Management in Systems

and Software Engineering, March 2012.

[2] C. Kidd, “The case for configuration management,” IEE Review, vol.
47, pp. 37-41, September 2001.

[3] K. Hinsen, K. Läufer, and G. Thiruvathukal, “Essential tools: version
control systems,” IEEE Computer in Science & Engineering, vol. 11,
pp. 84-91, November-December 2009.

[4] M. Rochkind, “The source code control system,” IEEE Transactions on
Software Engineering, vol. 4, pp. 364-370, December 1975.

[5] K. H. Lee, “Design and implementation of a configuration management
system,” Global Telecommunications Conference, vol. 3, pp.1563-1567,
November-December 1993.

[6] A. Do, “The impact of configuration management during the software
product's lifecycle,” Digital Avionics Systems Conference, vol. 1,
pp. 1.A.4-1 – 1.A.4-8, November 1999.

[7] A. Chan and S. Hung, “Software configuration management tools,”
Software Technology and Engineering Practice, pp. 238-250, July 1997.

[8] H. Yue, X. Liu, and S. Zhao, “Evaluate two software configuration
management tools: MS Perforce and Subversion,” Computational
Intelligence and Software Engineering, pp. 1-6, December 2010.

[9] D. Kim and C. Youn, “Traceability enhancement technique through the
integration of software configuration management and individual
working environment,” Secure Software Integration and Reliability
Improvement, pp. 163-172, June 2010.

[10] X. Wang, W. Chen, Y. Wang, and H. You, “The design and imple-
mentation of hardware task configuration management unit on
dynamically reconfigurable SoC,” Embedded Software and Systems,
ICESS '09, pp. 179-184, May 2009.

[11] M. Mehendale, “SoC – the road ahead,” IEEE VLSI Design, January
2006.

[12] J. Burns, “Technology trends and implications on SoC design,” IEEE
SoC Conference, pp. 386, September 2011.

[13] D. Bell, “Performance tuning Subversion,” IBM developerWorks, May
2007, accessed August 2012 http://www.ibm.com/developerworks/java/
library/j-svnbins/index.html.

[14] R. Prahov, H. Schmidt, E. Müller, and A. Graupner, “Subversion(r): an
Empirical Performance Case Study from a Collaborative Perspective on
Integrated Circuits and Software Development,” ICSESS, in press.

[15] R. Prahov, E. Müller, and A. Graupner, “Configuration Management
from the Perspective of Integrated Circuit Design,” IEEE 27th
Convention of Electrical and Electronic Engineers in Israel, pp. 1-5,
November 2012.

[16] P. Cederqvist, et al., “Version Management with CVS” (for cvs 1.12.13),
accessed August 2012, http://ximbiot.com/cvs/manual/, 2005.

[17] “The open source development report,” Eclipse Survey Report 2011,
June 2011, accessed August 2012, http://www.eclipse.org/org/commun-
ity _ survey/Eclipse_Survey_2011_Report.pdf.

[18] B. Collins-Sussman, B. Fitzpatrick, and C. Pilato, “Version Control with
Subversion” (for Subversion 1.7), 2011, http://svnbook.red-bean.com/.

[19] B. Berliner, “CVS II: Parallelizing software development”, USENIX
Winter 1990 Technical Conference, pp. 341–352, 1990.

[20] The OpenOffice™ project, http://www.openoffice.org/.

[21] “The BuildIC™ SoC Development Platform,” Methodics, accessed
August 2012, http://www.methodics-da.com/products/projectic.

Proc. of the Second Intl. Conf. on Advances in Electronics and Electrical Engineering — AEEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5939-1 doi:10.3850/ 978-981-07-5939-1_11

http://www.openoffice.org/

