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Abstract—The cost of a single zero-day network worm outbreak 
has been estimated at US$2.6 billion. Additionally zero-day  
worm outbreaks have been observed to spread at a significant 
pace across the global Internet, with an observed  infection 
proportion of more than 90 percent of vulnerable hosts within 10 
minutes. The threat posed by such fast-spreading malware is 
therefore significant, particularly given the fact that network 
operator / administrator intervention is not likely to take effect 
within the typical epidemiological timescale of such infections.  

An accepted tool that is used in researching the  threat 
presented by zero-day worms is the use of simulation systems. 
However when considering zero-day worm outbreaks on the 
Internet there are persistent issues of scale and fidelity. The 
Internet Worm Simulator (IWS) reported in this paper is designed 
to address these issues by presenting a novel simulation method 
that, on a single workstation, can simulate an entire IPv4 address 
space on a node-by-node basis. Being able to simulate such a 
large-scale network enables the further analysis of characteristics 
identified from worm analysis. As IWS does not rely on 
mathematical approximation, the epidemiological attributes 
identified from real-world data can be tested for zero-day worm 
outbreaks on the Internet.  

Experimentation indicates that IWS is able to accurately 
simulate and corroborate with reported characteristics of two 
previous zero-day worm outbreaks. It is intended that, in future, 
IWS may be used to aid both in the analysis of previous worm 
outbreaks and the testing of hypothetical zero-day worm 
outbreak scenarios.  

 
Keywords—cyber defence, malware, network worm, simulation, 
zero-day worm.  

I. INTRODUCTION 
A zero-day worm is a type of malware that exploits a 
vulnerability that has not been patched or acknowledged at the 
point of an outbreak, which owing to an automatic propagation 
method can spread pervasively throughout a network; which is 
exacerbated by either a lack of detection or speed of 
propagation [1]. In order to tackle such outbreaks an 
understanding of how they occur, their propagation method, 
and their epidemiological characteristics across a given 
network is essential [2]. Worms are often hard to prevent, 
counter, or contain, primarily owing to their potential speed of 
propagation; raging from fast random-scanning worms to 
slower ’stealthy’ worms that employ various techniques to 
propagate undetected. In order to aid the analysis of zero-day 
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worm epidemiology analytical models, such as [3], and 
simulation systems such as [4], have been adopted.  

Since the widespread worms that occurred in the first 
four years of the 21st century, such as Code Red [3] and 
Slammer [5], there have been a series of zero-day worms such 
as Conficker [6] in 2007 and Duqu [7] in 2011. These can 
incur significant costs, with one estimate for the cost of the 
Code Red outbreak being US$2.6 billion. It is imperative that 
defences are employed in order to mitigate or prevent such 
worm outbreaks. Simulation systems provide a tool which can 
aid research into worm analysis [5], and network worm 
countermeasures [8,9]. 

Issues persist in being able to simulate a worm 
outbreak on the Internet, owing to issues of scale and fidelity. 
Previous work has focused on methods to reach this large-
scale by either using mathematical approximations about how 
a worm has spread [3], or by introducing a mixture of detailed 
packet-level simulation and mathematical approximations 
[10].  

The remainder of this paper is presented as follows: 
Section 2 sets out a definition of terms; Section 3 discusses the 
relevant previous work; Section 4 details the design of the 
Internet Worm Simulator (IWS); Section 5 presents the 
experimental methodology and results; and finally section 6 
concludes the paper with a discussion summarising the 
findings and identifying any limitations and future work.  

II. LEXICON 
A lexicon has been presented for the clarification of the 
following terms, owing to their specific use in this paper.  

Zero-Day Worm: In this paper this is defined as a type 
of malicious software that propagates automatically without 
human interaction, using a vulnerability that has not been 
patched or widely acknowledged at the point of an outbreak. 
This is a similar definition to the taxonomy described by 
Weaver et al. [2], and other published literature (see [3, 5, 
11]).  

Epidemiological Analysis: In this paper an 
epidemiological analysis is based on the rate at which 
susceptible nodes become infected. This paper focuses on the 
total number of infected nodes at any given point during an 
outbreak, and not the difference in the number of newly 
infected nodes at each period of time.  

Large-Scale Simulation: This paper defines large-scale 
simulation as being able to, or the attempt to, simulate an 
entire IPv4 address space of nodes for a given scenario; often 
with the intent of simulating a network the size of a 
contemporary Internet.  
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Datagram: In accordance with RFC1594 [12] this 
paper defines a datagram as a data entity that is to be 
transmitted across a network, specifically, this term is used to 
describe the number of data entities transmitted by a worm 
during an outbreak.  

State Variable Machine: A processing method in 
which data object interaction is derived from a set of discrete 
states. In this paper this is focused on using a set of discrete 
states in order to describe the interaction between network 
nodes for the purpose of zero-day worm analysis.  

III. RELEVANT PREVIOUS WORK 
Owing to brevity, this paper focuses on only the key areas of 
previous literature. The key areas of focus in this paper can be 
divided into two key domains: the use of simulation systems in 
worm analysis; and the methods employed in order to simulate 
large-scale networks.  

A. Simulation Systems in Worm Analysis  
A number of simulation systems have been used in order to 
undertake zero-day worm analysis, most notable of which is  
[3],that used simulation in order to analyse the epidemiology 
of the Code Red outbreak of 2001. This has been extended in 
other works, such as that by Moore et al. [5], who used a 
random-constant spread model to analyse the Slammer 
outbreak of 2003. These simulations rely on generalised 
mathematical models in order to  simulate the scale of the 
IPv4 Internet..  

B. Large-Scale Simulation  
In order to improve on generalise mathematical modelling 
techniques, packet-level simulators, such as GTNetS [4],  have 
been developed to increase the granularity of the simulation 
but at the cost of a substantial overhead. This means that 
although the issue of fidelity is tackled, this is at the cost of 
not being able to feasibly reach sufficient scale for simulating 
zero-day worm outbreaks on the IPv4 Internet. Two 
approaches have been proposed to address these competing 
limitations: hybrid simulation methods; and state variable 
machine methods.  

Hybrid simulation methods, [10] combine the 
granularity of packet-level simulators alongside the 
generalised mathematical methods in order to reach a larger 
network scale. Reported research in this area is limited 
however, with significant issues to be resolved. 

State variable machine methods, such as those 
employed by Ediger [1] and Wei et al. [13]  tackle issues of 
scale by reducing each node to a state variable machine. This 
means certain characteristics about each node can be tracked 
without the significant overhead from packet-level simulation. 
In both [1, 13] the approach taken means that a single node is 
represented by a software object in the order of kilobytes in 
size. This significant memory allocation means that neither 
can reach the scale of an entire IPv4 address space on a node-
by-node basis.  

By reducing the memory allocation required for each 
node, IWS is able to retain node-by-node granularity while still 
being able to simulate networks with a size as large as the 
IPv4 address space.  

C. Motivation  
As far as the authors are aware no previous worm  simulation 
tool has been reported which is able to simulate an entire IPv4 
network on a node-by-node basis. Of note is the simulator 
reported in [1] which attempts this however, it only reaches 
autonomous-system level granularity. It is intended that by 
being able to simulate on a node-by-node level of granularity 
the simulator will enable the accurate epidemiological analysis 
of large-scale zero-day worms. This will mean simulation is 
undertaken based on the observed, or hypothesised, 
characteristics of a worm without having to employ a 
generalised  mathematical approximation.  

The simulator reported in this paper meets these 
requirement, as well as the target of running on a single PC 
workstation. 

IV. DESIGN AND CAPABILITIES 
The Internet Worm Simulator (IWS) was developed with the 
intention of employing it in an investigation of the 
epidemiology of existing and hypothetical worms. The ability 
to retain node-by-node granularity and scalability were key 
design criteria. Similarly the ability to simulate a broad range 
of worm spreading algorithms was a key requirement. Based 
on the findings from a review  of existing simulator designs, 
along with preliminary work with the NWS simulator reported 
in [3], it was decided the simulator would be developed using 
the SVM method. This is owing to the fact that it would 
enable the simulation of the whole IPv4 Internet address 
space, whilst maintaining node-by-node granularity.  

IWS has been developed in the C programming 
language, using the GCC compiler under a 64 bit 3.4 Linux 
Kernel. IWS only requires one byte of memory per host; this 
means for an IPv4 sized network it has a memory footprint of 
4GB. This enables iws to meet the design requirements, owing 
to the use of a compiled language that offers good low level 
control of memory resources. These specifications mean that 
IWS can be ported to other 64 bit operating systems, such as 
Windows, and can also be run on a variety of different 
hardware configurations.  

In order to minimise the memory requirements of the 
simulator, node states are stored in a single byte of memory. 
Compared to NWS this is a significant reduction, where in 
experimentation carried out by the others NWS typically used 
1.6KB per node. The SVM states will vary dependent on the 
worm instance being simulated however, this allows a variety 
of variables such as tracking there infection status and 
available bandwidth. These states can be modified depending 
on whether or not it is appropriate for each simulation 
respectively.  

The IWS simulation method can be divided into three 
key areas: initialisation engine, infection engine, and reporting 
engine. As Fig. 1 illustrates these engines pass data between 
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them in order to produce the results. The engines can be 
modified to incorporate different parameters, node 
compositions, algorithms, or reporting format according to the 
required specification.  

 

 
Figure 1 IWS Design 

 
Having received the parameters that are to be used in a 

given simulation, the initialisation engine begins by setting up 
the states of each node. This step will define which nodes are 
susceptible to infection and which are initially infected. If 
other states are employed this would also be set by the 
initialisation engine, with the intent of preparing the 
parameters provided for simulation. The final step undertaken 
by the initialisation engine is to pass its details to the reporting 
engine having completed its other steps.  

The infection engine, having received the formatted 
data from the initialisation engine uses this in order to carry 
out the worm infection algorithm provided. This is an iterative 
process that uses a “clock tick” in order to determine the total 
number of infected hosts at a given point in time. For this 
paper a clock tick is representative of a single simulated 
second, and as such is passes on the current state of the worm 
outbreak to the reporting engine in a format that is 
representative of each simulated second. Upon a set point, for 
example either a particular amount of simulated time passing 
or the  number of infected nodes reaching a set threshold, the 
infection iterations cease and the final data is passed to the 
reporting engine.  

In order to log all the activity in a desirable output, the 
reporting engine takes  data from both the initialisation and 
infection engines . This means the number of nodes with a 
certain state can be logged, giving the opportunity for 
comparative and exploratory investigations and 
epidemiological analysis.  

IWS can be modified for a variety of different scenarios 
using a series of user-defined parameters that detail; the worm 
propagation method, the network composition, the worm 
packet size, its initial infected hosts at the point of an 
outbreak, and the total number of susceptible hosts..  

V. EXPERIMENTATION 
The selection of experimental results reported in this paper 
focus on the operational evaluation of the simulator. In order 
to do so simulation was undertaken in order to compare its 
results with empirical data of previous worm outbreaks. For 
this paper the Slammer worm of 2003 and the Witty Worm of 

2004 have been used for comparison, using the empirical data 
reported in [5,11].  

As both these worms performed random-scanning  as 
part of their infection algorithm, a range of simulation results 
have been presented. A set of five simulations, using different 
pseudo-random number seedshave been undertaken.  

A. Methodology  
In order to assess the capabilities of IWS it was validated 
against the empirical data presented in [5,11], for the Slammer 
and Witty worms respectively.  

Firstly, the average reported datagram transmission rate 
has been simulated in order to represent a preliminary 
comparison with the empirical data. Secondly, further worm 
characteristics are included in order to test the accuracy of the 
simulator. 

Finally, in order to assess the ability of iws to simulate a 
large-scale infection, a hypothetical scenario has been 
simulated wherein all versions of a popular operating system 
are vulnerable to a Slammer-like worm infection vector. 

B. Slammer  
The analysis undertaken by Moore et al. [5] reports a set of 
key characteristics about the Slammer worm outbreak of 2003, 
which have been used as the simulator parameters. Moore et 
al. report that approximately 18 hosts per million of the entire 
IPv4 address space were susceptible to infection. The 
maximum recorded datagram scanning rate was observed at 
26,000 datagrams per host per second, which is reasonable 
given a common upper bound of 100BaseT interfaces, and a 
total worm Ethernet frame size of 430 bytes.  

It is reported that Slammer exhibited a mean of 4,000 
datagrams generated per infected host per second throughout 
its outbreak period, meaning that the mean transfer speed per 
node was just over 13 megabits per second. Plotting this mean 
value against the data reported by Moore et al., as shown in 
Fig. 2, it can be seen that the simulator produces, on average, 
fewer datagrams generated per second. This is potentially due 
to the influence of the peak scanning rate, having a greater 
number of datagrams at this early stage could significantly 
impact the rate at which new hosts become infected.  

 
Figure 2 Preliminary IWS Slammer Worm Simulation 
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 r t = fr t  − 1 

 
Figure 3 IWS Slammer Worm Simulation 

 
Taking this into consideration, a ramp-down factor has 

been applied based on the reported findings by Moore et al. 
that an initial spike in the datagrams per second observed 
reduced to a lower average overall owing to an increase in 
congestion as more datagrams were generated. This higher 
datagram generation rate and datagram generation decrease 
has been applied so that each subsequent clock tick has a 
ramp-down factor (f) of 0.95, where the datagram generation 
rate, r, for a given clock tick, t, is determined according to 
(1). Fig. 3 illustrates that by applying this factor, the 
simulation matches the datagram generation rate more closely 
for the Slammer worm, whilst still operating on a node-by-
node basis.  

C. Witty  
Key characteristics have also been reported by Shannon et al. 
[11] regarding the Witty worm outbreak of 2004 that has been 
incorporated in the simulator. It was reported to have a much 
smaller susceptible population than Slammer, recorded as 
12,000 hosts, or between 2 and 3 hosts per million of the entire 
IPv4 address space. Unlike Slammer, Witty is also reported to 
have had a variable datagram size, with an Ethernet frame size 
of between 796 and 1307 bytes.  

With a frame size just over three times larger than 
Slammer, it is reported that Witty was able to maintain an 
average of 370 datagrams generated per infected host per 
second, with a main peak of 970. Of note here is that 38 nodes 
were reported to be transferring at 9,700 datagrams per second 
continuously for over an hour. Simulating the average values 
as 3 hosts per million susceptible, Fig. 4 shows that the 
reported metrics do fall between the two datagram size values, 
with a sharper rise at the start of the outbreak, potentially 
owing to the 38 hosts generating datagrams at ten times the 
main peak level.  

By including the set of 38 hosts as part of the infected 
hosts, I, for a given clock tick, t, where nodes h1 to h38 
generate at 9,700 datagrams per second and the other nodes h39 
to hnscan at 970 datagrams per second the faster increase in 
the number of infected hosts can be included, as shown by the 
matrix in (2). Fig. 5 on page 1 illustrates how by including this 

node differentiation  a closer match to the empirically reported 
Witty worm behaviour is achieved.  

 
Figure 4 Preliminary IWS Witty Worm Simulation 

 I t = [h1 … h38       h39 … hn] 

 
Figure 5 IWS Witty Worm Simulation 

D. Large-Scale Simulation  
In order to demonstrate the scalability of iws a worm outbreak 
scenario that is much larger than that previously reported has 
been simulated. This scenario uses the same average empirical 
metrics of the Slammer worm outbreak however, a simulation 
with a significantly larger susceptible populous has been 
undertaken. 

The scenario of an exploit that is common to all recent 
Windows operating systems has been considered. 
W3Counter[14] reports that 78.8% of internet-connected hosts 
use a recent version of the Windows operating system (7, 
Vista or XP) and so a susceptible populous of 80% has been 
simulated.  

Fig. 6 demonstrates that with such a large number of 
hosts susceptible a fast-scanning worm like Slammer may 
spread incredibly quickly; in this case only taking 1.5 seconds 
for 99% of the susceptible populous to become infected on the 
current IPv4 Internet.  

VI. DISCUSSION 
The cyber-epidemiological analysis of zero-dayworms on the 
Internet remains a significant challenge, and the use of 
simulation systems remain a viable tool for such research. This 
paper has presented a novel network worm simulator, the 
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Internet Worm Simulator (IWS), and has demonstrated its 
feasibility for the simulation of zero-day worm epidemiology 
in large-scale networks (currently up to 232 hosts). It has also 
confirmed the accuracy of the simulator, by comparing its 
output with available empirical data for real-world zero-day 
worm outbreaks.  

 

 
Figure 6 Hypothetical Slammer-style Worm with an 80% 

Susceptible Populous 
In comparison with other worm simulation techniques, 

such as packet-level simulation, statistically-based generalised 
mathematical modelling and a hybrid of the two, the state-
variable machine method employed in IWS can be used to 
simulate zero-day worm epidemiology on an Internet-scale 
network, whilst still retaining node-by-node granularity. This 
paper has demonstrated that the method can incorporate more 
complex epidemiological behaviour, as well as utilising the 
node-by-node granularity it offers in order to achieve more 
accurate simulation results.  

It is hoped that the IWS will form a useful tool for the 
further wide ranging epidemiological investigations of both 
real and hypothetical zero-day worms and countermeasure 
techniques,, providing security researchers and professionals 
with the capability to simulate large-scale outbreaks on non-
specialist, widely available computer systems whilst retaining 
significant accuracy.  

A. Limitations and Future Work 
In this paper the IWS relies on the existing worm analysis of 
previous worm outbreaks, which in turn relies on accurate data 
being gathered at the point of an outbreak. If there is an issue 
with the data gathering process, as shown in [5] as the 
Slammer worm outbreak matures, then the reliability of any 
worm analysis becomes an issue. Similarly, this does not 
account for hypothetical scenarios, or scenarios where only a 
limited set of information is available to provide the simulator 
with parameters, which may mitigate some issues regarding 
incomplete empirical data.  

This paper has reported work undertaken as part of a 
development programme for the IWS. Currently, the authors 
expect to extend the work in a number of areas, with a view to 
further enhancing the usability and capabilities of the 
simulator. Key areas in which further work is currently 
focused are as follows:  

 Decreasing the execution time of the simulator while 
retaining the single workstation design criteria.  

 Improvements in simulator accuracy and granularity, 
in particular by including a more granular model of 
the network topology and bandwidth constraints, 
whilst retaining, in so far as possible, the simple set 
up of the simulator.  
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