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Design of Optimal Robust Controller for Third 
Order System using Particle Swarm Optimization  
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Abstract: In this paper particle swarm 
optimization(PSO)has been applied for the design of the  
optimal robust controllers for third order systems . The 
controller design problem is posed as constrained 
nonlinear optimization problem. The parameters of the 
chosen controller are obtained solving the nonlinear 
constrained optimization problem.The performance index 
which has been used in the design is integral square 
error(ISE).The constraints are frequency domain 
performances related with robust stability .  
 
keywords—PSO,  ISE, nonlinear optimization, optimal 
robust controller. 
 
 
     I. INTRODUCTION 
There are model uncertainties present in a dynamical 
system or plant. Due to these model uncertainties there is a 
need to design robust controller. Robust controller provides 
robustness in the face of uncertainties [1]. Recently, H∞-
control techniques have found extensive applications for 
the design of robust controllers [2]-[3]. These techniques 
make use of H∞-norm and robustness of the system is 
achieved in terms of stability and performance. The main 
disadvantage of the design techniques based on H∞- theory 
is that the order of the controller is high. The parameter 
optimization techniques help in order reduction. Parameter 
optimization methods start with controller structures that 
are motivated by the ideas from classical, modern or other 
techniques. What is meant by the controller structure is a 
system model with one or more parameter values that can 
be adjusted. The next step in a parameter optimization 
method is to select an objective function or performance 
index that gives the quality of performance. 
After a controller structure, an objective function and some 
constraints have been specified, the problem can be posed 
as non-linear optimization problem which can be solved to 
get the parameters of the controller [4]. The objective 
function may consist of time domain and/or frequency 
domain performances expected from the system.  
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In general, this objective function is non-linear, non-
differentiable, discontinuous and non-convex in nature. The 
optimization methods based on calculus will not work. 

Only search methods can be used. The classical methods 
use nominal model of plant.The robustness of the control 
loop is indicated by phase margin and gain margin. 
Evolutionary Algorithms guarantee to provide global or 
near global optimal solution [5]-[9].  
 
 In this paper, the objective function which has been used in 
the optimization is indicative of the time domain 
performance of the system, namely, integral  square (ISE)  
error .The constraints which have been imposed in the 
optimization are related with the robust stability. 
 
                 2. OPTIMAL ROBUST CONTROL 
While designing the robust controller, the model 
uncertainty of the plant is explicitly considered, two kinds 
of model uncertainties: structured and non-structured. 
Structured model uncertainty or parametric model 
uncertainty is caused by the parametric modifications of the 
plant and can be described by the approaches, such as, 
interval methods [10]-[11]. The causes of non-structured 
model uncertainty are, usually, non-linearities  of the plant 
or modifications of the operating point. This type of the 
model uncertainties can be represented using H∞-theory. 
The classical methods of the controller design use a  
nominal model of the plant. The classical measures of the 
robustness of the system are gain and phase margins. In the 
robust controller design methods based on the H∞-theory, a 
family of the models of the plant is used. A nominal model 
of the plant and model uncertainty are considered. It is 
necessary to guarantee the stability of the feedback control 
system taking into account the model uncertainty. The 
conditions of the robust stability described using H∞-norm. 
A. Condition for Robust Stability 
Consider the control system shown in the Fig.1. The 
controller is described by means of a transfer function with 
fixed structure C(s,k). The vector of the controller 
parameters; k, is 

 k = [k1, k2……, km]T                                     (1) 

 

Fig.1. Control system composed of a controller with fixed       
          structure and a plant with model uncertainty 
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The plant is described by a multiplicative model according 
to equation (2). By using the multiplicative model, the 
transfer function of the real (perturbed) plant G(s) is 
described by the following [3]: 
          G(s)=Go(s) (1+(s)Wm (s))                       (2) 

Where  
G0 (s) is nominal transfer function, 
 (s) is perturbation in the plant and 
Wm(s) is weighting function that represents an upper bound 
of the multiplicative uncertainty.  
 It is assumed that the model uncertainty, Wm(s), is stable 
and bounded, and that no unstable poles of Go(s) are 
canceled in forming G(s). 
 
The condition for robust stability is stated as follows [3]: 
If the nominal control system ((s)=0) is stable with the 
controller C(s,k), it guarantees robust stability of the 
control system, if and only if the following condition is 
satisfied: 

                                   (3) 
  
This condition for robust stability represents only a 
sufficient condition. So, the robust stability of a control 
system can be evaluated by means of the H - norm. 
 
Generally, the multiplicative model is used. If the plant is 
described by an additive model, it can be easily' converted 
into a multiplicative model. This paper will consider the 
multiplicative model. 
    3. OPTIMAL ROBUST CONTROLLER  DESIGN                  

In Fig.1, for the nominal case, the tracking error signal is 
given by  
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The performance index ,J, is given by 
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It can be described in the frequency domain of the Parseval 
theorem]:  
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The reference signal (set point) is an unit step function 
given by: 
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The error E(s) can be expressed then as a rational function: 
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In this case, the degree m of the polynomial D(s) must be 
smaller than the degree n of the polynominal A(s), so that 
the squared error J in equation (6) has a finite value. 
Introducing the error E(s) from equation (8) into equation 
(6) results in the following 
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In design of optimal robust controller, both the tracking 
performance and robust stability are considered. The 
controller design is formulated as constrained optimization 
problem as  follows: 

 )(min kJ n
k

 subject to 1)),((max 5.0 k


 

The objective of the minimization is to find out the vector 
of controller parameters k so that the value of the 

performance index )(kJ n  is minimum and the condition 

of robust   stability 1)),((max 5.0

),0[



k


    is satisfied. 

          4. PARTICLE SWARM OPTIMIZATION 

It is a population based stochastic optimization technique 
developed in 1995 [12],from the  simulation  of  social 
behavior of bird flocking or fish schooling. PSO has been 
found to be simple, effective and robust  in solving 
problems with nonlinearity, non-differentiability and 
multidimensional optimization [13]. In PSO, each particle 
represents a candidate solution to the optimization problem. 
At the beginning, each particle spans randomly through the 
problem space and updates its velocity and position with 
the two best values. The first best value, called pbest is the 
best solution achieved so for. Another value, called gbest is 
the Global best solution obtained so far by any particle in 
the swarm. At each interaction, each particle moves to 
pbest  and gbest locations. The cost function evaluates the 
performance of particles to determine whether the best 
solution is achieved. In the present thesis work, the PSO is 
used to solve the constrained optimization problem.  

In PSO algorithms each particle moves with an 
adaptable velocity within the regions of decision space and 
retains a memory of the best position it ever encountered. 
The best position ever attained by each particle of the 
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swarm is communicated to all other particles.  The updating 
equations of the velocity and position are given as follows:- 
A particle position is given by xi(k) 
A particle velocity is given by vi(k) 
A best "remembered" individual particle position is given 
by pi(k) 
A best "remembered" swarm position is given by pg(k) 
Cognitive and social parameters referred to as acceleration 
constants are given by c1 and c2.Random numbers between 
0 and 1 are r1 and r2.A inertia weight is given by w.Pi refers 
who best position found by particles. Velocity of Individual 
particle is updated as follows:   
vi (k+1) =wvi (k) + r1c1[ pi(k) – xi(k) ] + r2c2 [ pg(k) – xi(k) ] 
Position of individual particle is updated as follows: 
xi(k+1) =xi(k) +vi(k+1)  
The details of the PSO algorithm are given in flowchart. 

. 
        Fig.2. Flowchart of the PSO algorithm 

  

               5. DESIGN EXAMPLE 

To illustrate the method, a detailed design example is 
presented. Consider the control system shown in the Fig. 
4.1The model of plant taken from [14] is described by the 
following transfer function:     

  

      

                                (9)  

 

R(s)     E(s)                     U(s)                       Y(s) 

 

       Fig.3. Control system with uncertain plant  

The controller structure C(s,k) is chosen in the following 
form [14] 
   

                             (10) 
The vector k of controller parameters is given by k = [k1, k2, 
k3, k4, k5]

T  which is to be obtained solving the optimization 
problem. 
The multiplicative uncertainty Wm(s) is taken as [14]: 

                                                (11) 
        
The error signal E(s), assuming the input signal is a unit 
step, is evaluated as follows 

:                                      (12)    
    
The squared error J5(k) = E' E is obtained by calculating 
error E due to step input at each instant from 1 to 10 
seconds in the interval of .05 sec. This squared error is to 
be minimized under the robust stability constraint given by 
the equation (3). The H norm in equation (3) is calculated 
using MATLAB function normhinf.    Bode plots of system 
without controller are shown in the Fig.4.2. The gain and 
phase margins are infinity and -24.4 deg respectively.                                                                                                                                 
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    Fig.4. Bode plots of the system without controller  
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      Fig.5. Step response of the plant without controller  

Performance index J5 (k) is to be minimized is taken as 
ISE.  In writing m-file the integral has been taken as 
summation over 201 points. Time is vector consisting of 
time instants from 0 to 10 sec in the interval of 0.05 second. 
J5(k) has been minimized under the constraint of robust 
stability given by equation (3).   The following PSO 
parameters were used in running the PSO 

TABLE 1 OPTIONS SETTINGS REQUIRED AS INPUT    

               FOR PSO                                         

Sr.No. 

 

Options 

 

Values 

 

1 Number of particles in swarm for 
each variable to be optimized 

25 

2 Cognitive acceleration coefficient 2.8 

3 
 

Social acceleration coefficient 1.3 

4 Maximum number of iterations 2500 

5 
 

Maximum duration of optimization 2500 

6 
 

Maximum number of function 
evaluations 

2500 

7 
 

Maximum difference between best 
and worst function 
 
 
 evaluation in simplex 
 

1e-6 

8 
 

Maximum difference between the 
coordinates of the vertices 
 

1e-3 The controller parameter vector was searched in following 
bounds: 
k1= [10,1000]; k2 = [1,100]; k3 [1,100]; k4 = [0,1]; k5 = 
[0.1,10]. 

The PSO algorithm converged with minimum value of 
J5(k

*)=3.5131 and optimal solution vector k* = [999.99, 
14.5065, 14.5146, 1, .5387]T 

Bode plots of system with designed controller are shown in 
the Fig.6. The gain and phase margins are 9.14 dB and 49.6 
deg respectively. 
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.  
      Fig.6. Bode plots of system with the designed controller  

The closed loop step response of the feedback control 
system shown in the Fig. 3 with designed controller is 
shown in Fig. 7. 
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           Fig.7. Step response of the controlled plant without 
                      uncertainty  
The closed loop step response of the feedback control 
system shown in the Fig.3 with uncertainty given in 
equation (11)  with designed controller is shown in Fig. 8. 
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Fig.8. Step response of the controlled plant with uncertainty  
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The performance of the control system shown in Fig.3  
with designed controller is compared with respect to 
closed-loop step response with and without uncertainty. 
The tracking behavior of the control system  with and 
without uncertainty is shown in Fig. 9. 
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Fig.9. Step response of the controlled plant with and without      
          uncertainty 
           

There is no difference between the two responses. The 
designed controller gives satisfactory response in the face 
of plant uncertainty. 
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                 Fig.10. Control signal  

 

The following time domain performances have been 
achieved: 
6. CONCLUSIONS 
In this paper a method is presented to design an optimal 
robust controller with fixed structure, Known in the 
literature as the mixed H2/H∞ problem. The design problem 
is formulated as an optimization problem with constraint of 
type H∞ norm. The tracking performance of the closed loop 
system with proposed method has been found. Therefore 
the proposed control algorithms are shown to be effective. 
In the future, this control method can be further extended 
and applied to multivariable system.  
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