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Abstract: The first part of this paper is devoted to a brief 

introduction, terminology and a comparison between different 
methods of preventing and detecting malware. The second portion 
of this paper presents a new method for classifying malicious files 
versus normal ones. Our approach is based on differences between 
assembly op-code frequencies in malware and benign classes.  We 
have also utilized decision tree algorithms to simplify the 
classification. 

Keywords—Malware detection, Opcode frequencies, ANOVA 
test, Duncan multiple range test, Decision tree classifier,  

I.  Introduction  
Malware incidents cost organizations and industries 

billions of dollars every year. In a 2012 worldwide survey on 
the financial impacts of malware, more than 2,600 business 
leaders and IT security practitioners were interviewed [1]. 
About 30% of participants thought a successful cyber-attack 
can cause damage between 200,001 and 300,000 U.S. dollars. 
Only 2 percent of respondents believed a single successful 
cyber-attack would cost their company less than 10,000 U.S. 
dollars.  Malicious programs may seem like a relatively new 
concept, but they started appearing on dedicated networks 
such as ARPANET in the 1970s. In 1971, the Creeper virus 
appeared. It was able to replicate itself and its function was to 
display a simple message. The rabbit virus was another 
instance in that decade. The Rabbit virus spread across a 
network and generated copies of itself, impairing performance 
until a computer crashed. The term “Computer Virus” 
appeared in 1983 after Professor Len Adleman at Lehigh 
University demonstrated the concept at a seminar. In 1987, the 
Vienna Virus was introduced. It is the first virus that was able 
to destroy data. Fred Cohen published his first article about 
"Experiments with Computer Viruses" which were 
incorporated into his PhD thesis, "Computer Viruses - Theory 
and Experiments," published in 1986. His rather 
mathematically-oriented definition of a virus is still 
recognized today and does not encompass the negative 
connotation that the term virus has acquired nowadays [2].  
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In 1990, the Chameleon virus emerged. It is known as the 
first polymorphic virus, which is able to change itself to avoid 
detection. In 1991 more than 300 viruses were documented 
and many antivirus products were introduced in the market. 
During 1996 malware like Win32.HLLP.DeTroi relayed data 
about compromised computers; thieves have stolen passwords 
and have been controlling systems remotely since then. Since 
the introduction of the web, E-mail and the Internet have 
become the primary transmission vectors, as scripts 
automatically load viruses from infected websites. In 2003 
Slammer infected memory in computers worldwide through 
the Internet, clogging networks and causing shutdowns. Since 
2007 Botnets have infected millions of Internet users 
worldwide. Zombie systems send spam and generate Denial of 
Service (DoS) attacks, compromising credentials and data. It is 
no wonder that today cyber security is the top concern of IT 
managers [3]. 

 

Malware Types and Terminology 
Malware, an abbreviation for “Malicious Software,” is 

software used or designed to disrupt or deny computer 
operations, gather sensitive information that leads to loss of 
privacy or exploitation, or gain access to private computer 
systems. It is a general term for any kind of hostile, intrusive, 
or annoying software that can appear in the form of code, 
scripts, active content, etc., and is able to infect a single 
computer, server, or an entire computer network [4]. Malware 
is usually categorized into “families” (referring to a particular 
type of malware with unique characteristics) and “variants” 
(usually a different version of code in a particular family). 
Malware is put in an information system to cause harm or to 
subvert that system for use in purposes other than intended by 
their owners [5]. Malware includes computer viruses, worms, 
Trojan horses, spyware, adware, rootkits, logic bombs, bots 
and other malicious programs. In law, malware is sometimes 
known as a computer contaminant [6]. Until a few years ago, 
viruses and worms were the most common types of malware, 
but nowadays other kinds have emerged and are extensively 
distributed. 

Computer Viruses: Viruses are programs that replicate 
themselves. As soon as they execute, they make one or more 
copies of themselves. If these copies are also executed, they 
would reproduce even more copies. Usually a computer virus 
attaches itself to other executable files. This will ensure more 
efficient reproduction. Viruses must have two important parts 
to survive. Firstly, they must have a search subroutine to 
locate new files, disks, etc., in order to infect them. Secondly, 
they must have another part to copy the virus body effectively 
into the files which the search function locates. The most 
commonly used technique consisted in appending the viral 
code at the end of the executable file then modifying the entry 
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point to the point that viral code starts and finally resuming the 
execution of the normal code.  

Worms: Worms are self-replicating programs that are able 
to replicate themselves, but unlike viruses, they do not infect 
other files or programs. They typically use unpatched 
vulnerabilities in network protocols and services such as email 
to distribute themselves quickly without user intervention. 
They also may use Auto-Run capability to propagate through 
digital medias like USB Pen drives, CDs/DVDs, etc. By 
consuming network bandwidth they may decrease the overall 
performance or sometimes clog the entire network. 

Trojan Horses: Trojans are another type of malicious 
programs that masquerade as benign applications. Trojans use 
some appealing functions to lure users to execute them. They 
initially seem to perform desirable functions, but after 
execution, in addition to the expected functions, they steal data 
or damage the system. For example, a Trojan may appear like 
a PC game but in fact after being run, it may allow a hacker 
remote access to the victim’s system over a network. Trojans 
could be used to install additional worms or viruses. These 
kinds of Trojans are known as Droppers. Backdoor (Trapdoor) 
Trojans also may be utilized by an intruder to gain a privileged 
remote access to the system by opening a TCP/UDP network 
port. 

Logic Bombs: Typically, logic bombs are normal 
programs which contain some hidden malfunctions. These 
hidden malicious codes are intentionally inserted into the 
software and can be triggered automatically when pre-
determined conditions are met. For example, a logic bomb 
could be activated on a specific date and time and it might 
delete particular file types or even execute another malware. 

Rootkits: Rootkits are modified versions of popular 
programs, tools or operating system files that have been 
replaced with original ones by hackers as soon as breaking 
into a system.  They are designed to conceal the existence of 
certain processes or programs from normal detection methods 
and they mostly provide continuous privileged access to the 
victim’s computer. Rootkits are categorized in different 
classes depending on the level of operating system that they 
are running in.  User-mode rootkits run along with other user’s 
applications in the application ring (Ring 3), while Kernel-
mode rootkits mainly run with the highest operating system 
privileges (Ring 0) by adding code or replacing operating 
system modules. The kernel-mode rootkits are often dangerous 
since they can alter the behavior of the operating system 
kernel. Therefore, it could be very difficult to detect them 
because of their ability to hide themselves from even kernel-
level detector software. 

Adware: An adware (advertising-supported software) 
automatically downloads banner ads and adverts pop-ups. In 
brief, any software that installs itself on the system without the 
user’s knowledge and displays advertisements typically when 
the user browses the Internet is called as adware. Adware, by 
itself, is harmless; however, some may include integrated 
spyware such as key loggers and other privacy invasive 
software. Adware might be considered as a borderline case 
between malware and normal software and is also known as 
greyware [7]. 

Malware Detection Techniques 
Nowadays, many anti-malware products from different 

professional companies are available in the market.  These 
products utilize different techniques to combat malware. Anti-
virus solutions are commonly installed at the operating system 
kernel level and generally consist of two fundamental 
modules: a database of information regarding virus signatures 
or common abnormal behaviors that viruses have and an 
inspection engine that utilizes the database for detection 
purposes. 

Malware analysis methods can be categorized into two 
main groups:  

a) Static Analysis 

b) Dynamic Analysis 

The first method is the analysis of malware without 
executing it. In this method, by collecting low level 
information such as Assembly Op-code Frequencies, which 
will be discussed later in this paper, Control Flow Graphs, 
System Call Graphs, Data Flow Graphs or other types of 
statistical data, we can analyze and detect malware. Many 
disassemblers and debuggers can be used to extract low level 
information. For instance, IDA Pro (Riesen and Bunker 2009) 
is a disassembler, which generates assembly language source 
code from machine-executable code. Static analysis is 
relatively fast and safe. It also produces few false positive 
errors. On the other hand, it has some disadvantages like the 
possibility of not detecting metamorphic and/or unknown 
viruses, which use code obfuscation techniques [8].    

The second method is the analysis of suspected files during 
their execution. Dynamic analysis uses virtual or simulated 
environments, such as an emulator or a virtual machine, to 
monitor the behavior and functionality of executable files. The 
analysis environment must be invisible to the malware since 
the malware writer may use an anti-virtual machine or an anti-
emulation tool to conceal their malware functions if they 
suspect that they are under analysis. Dynamic analysis fails to 
detect intended activities if the malware changes its behavior 
depending on trigger conditions such as the presence of a 
specific file or a specific day, as only a single execution path 
may be examined in each attempt [8].  

Anti-virus software can operate in two different modes 
known as On-Demand and On-Access. On-Demand mode 
allows user to activate the antivirus manually at any desirable 
time, but On-Access mode automatically monitors system 
objects that programs or operating system access for any 
purpose. Table 1 summarizes the advantages and 
disadvantages of the malware detection methods. 
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Detection/Prevention 
Method 

Advantage Disadvantage 

Signature Based 
Fast, accurate, few false 

alarms 

Not effective in the 
case of new unknown 

malware detection 

Behavior Based New malware detection 
High false alarm, 
unproven 

Code Emulation Based 
Polymorphic/Metamorphic 

detection 
Costly to implement 

Integrity Checking 
Simple, high detection rate 

on the file system 

Slow, not 
preventative, high false 

alarms 

Sandboxing Damage preventive 
Not compatible with 

all software 

Table 1. Summary of the strength and weakness of malware detection 
techniques. 

 

Proposed Methodology 
 In this section our proposed approach is described. 
Our method is based on the differences between opcode 
frequencies of the collected random samples of malicious and 
normal files. Our experiment consists of following steps: 
 
Step 1: Malicious and Non-malicious sample files collection. 
Step 2: Malware unpacking. 
Step 3: Disassembling the binary executables to retrieve the 
assembly program. 
Step 4: Extracting opcodes and calculating assembly function 
frequencies from the assembly program. 
Step 5: Creating a database of observed results for each group 
of files and finding effective opcodes using the ANOVA and 
Duncan Multiple Range Test. 
Step 6: Testing different decision tree algorithms to choose 
the best classifiers. 
 
 Sample Collection: The first step of our experiment 
consisted of collecting random samples of malware and 
normal files. To gather normal files which constitute our 
“Benign class”, Portable Executable (PE) files were selected 
from two sources including the installed Cygwin software (a 
collection of tools which provide a Linux look and feel 
environment for Windows) and “System32” folder of MS-
Windows 7 Ultimate version. From listed files, which yielded 
a normal distribution (based on file size), a total of 100 PE 
samples were selected and placed into four-size blocks, with at 
least 10 samples in each block. Regarding malware, five 
classes of interest including Viruses, Trojans, Adware, Worms 
and Rootkits were defined. Malware samples were collected 
from various online virus repositories such as the VX-Heaven 
website (the VX Heaven website at 
http://vx.netlux.org/index.html is unreachable since 
23.03.2012 due to police investigation) and the Virus Sign 
website (http://www.virussign.com). Out of thousands of 
malicious files, a total number of 200 malware from different 
families were randomly chosen for further analysis. Table2 
summarizes the malware samples’ information. 

 
Malware 

Class 

Number 
of 

Samples 
File Size  Some Malware Families* 

Virus 33 
[10KB – 2 

MB) 
Win32/Tenga, Win32Neshta, 

Win32/Chir, Win32/Sality, etc. 

Trojan 76 
[10KB – 2 

MB) 
Win32/Ripinip, Win32/Wisdoor, 

Win32/Delf, Win32/SpyVoltar, etc. 

Worm 45 
[10KB – 

1MB) 
Win32/Mydoom.Q, Win32/Dabber, 
Win32/Bflient, Win32Pronny, etc. 

Rootkit 15 
[10KB – 5 

MB) 
Win32/Obfuscated.NSPWGMH, 

Win32/PSW, etc. 

Adware 31 
[10KB – 3 

MB) 

Win32/Adware.OneStep, 
Win32/Adware.Gamevance, 

Win32/Adware.GabPath, 
Win32/Adware.Filenolja, etc. 

Table 2. Malware Samples Information (* ESET NOD32 Antivirus) 
 

 MALWARE UNPACKING: AFTER OBTAINING MALWARE, THE 

NEXT STEP IS TO CHECK THE FILES FOR PACKING INFORMATION. 
PACKERS ARE MAINLY USED TO OBFUSCATE MALWARE SOURCE 

CODE OR TO COMPRESS THE EXECUTABLES. MALWARE 

DEVELOPERS USE PACKING TECHNIQUES AS A CHEAP AND EASY 

WAY OF TURNING A KNOWN PIECE OF MALWARE INTO 

SOMETHING NEW, WHICH MALWARE SCANNERS CAN'T DETECT. 
EXISTING COMMERCIAL MALWARE SCANNERS SEARCH BINARY 

FILES FOR PREDEFINED SIGNATURES, BUT OBFUSCATED 

MALWARE USES PACKERS TO PROTECT THEIR INTERNAL CODE 

AND DATA STRUCTURES. PACKERS COMPRESS AND ENCRYPT THE 

PE FILE IN THE SECONDARY MEMORY AND RESTORE THE 

ORIGINAL EXECUTABLE IMAGE WHEN LOADED INTO MAIN 

MEMORY (RAM) [9]. SOME MALWARE USES MULTIPLE PACKING 

TRANSFORMATIONS TOGETHER, WHICH MAKE THE AMOUNT OF 

WORK NECESSARY TO EMULATE THE FULL UNPACKING 

OPERATION MUCH MORE EXPENSIVE AND TIME CONSUMING. 
SOME PACKERS SHRINK FILE SIZE THROUGH COMPRESSION. FOR 

EXAMPLE, UPACK IS A WINDOWS-BASED COMPRESSION PACKER; 
IT COMPRESSES PE-FORMATTED FILES WITH VERY HIGH 

COMPRESSION RATES. MANY MALWARES HAVE USED IT TO 

AVOID DETECTION [10]. THE ULTIMATE PACKER FOR 

EXECUTABLES (UPX; HTTP://UPX.SOURCEFORGE.NET), AND 

ASPACK (WWW.ASPACK.COM) ARE SOME OTHER KNOWN 

EXAMPLES OF THIS GROUP.  YODA’S CRYPTER 

(HTTP://YODAP.SOURCEFORGE.NET) AND POLYCRYPT PE 

(WWW.JLABSOFTWARE.COM) ARE POPULAR EXAMPLES OF THE 

CRYPTER PACKERS. PROTECTORS FEATURE BOTH COMPRESSORS 

AND CRYPTER PACKERS. SOME COMMERCIAL PROTECTORS, 
SUCH AS ARMADILLO (WWW.SILICONREALMS.COM) AND 

THEMIDA (WWW.OREANS.COM), ARE IN THIS GROUP. FINALLY, 
BOUNDLER PACKERS PACK MULTIPLE EXE FILES AND DATA FILES 

INTO ONE EXECUTABLE FILE. PEBUNDLE 

(WWW.BITSUM.COM/PEBUNDLE.ASP) AND MOLEBOX 

(WWW.MOLEBOX.COM) ARE SOME EXAMPLES OF THIS CLASS 

[10]. BY MEANS OF SOME NATIVE DEBUGGING TOOLS SUCH AS 

IDA PRO AND OLLYDBG (WWW.OLLYDBG.DE), WE CAN READ THE 

SECTION NAMES IN THE SECTION TABLE OF A PE HEADER, TO 

FIND OUT IF A PARTICULAR PE FILE IS PACKED OR NOT. SOME 

UNDERGROUND TOOLS ARE ALSO AVAILABLE, WHICH CAN 

AUTOMATICALLY EXTRACT PACKING INFORMATION OF A GIVEN 

PE FILE. IN OUR PROJECT SEVERAL TOOLS, SUCH AS THE PEID[11] 

AND THE EXEINFO-PE (HTTP://WWW.EXEINFO.ANTSERVE.COM), 
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WERE USED TO AUGMENT COMPILER AND PACKER INFORMATION 

TO THE DATABASE. PEID IS A DETECTOR USED FOR MOST 

COMMON PACKERS, CRYPTORS, COMPILERS AND EVEN 

SIGNATURE-BASED PACKER DETECTION IN PE FILES. THE RESULT 

OF ANALYZING OUR MALWARE USING PEID SHOWED THAT 

AROUND 63% OF SAMPLES WERE PACKED. 

 AFTER RETRIEVING THE PACKING INFORMATION OF OUR 

SAMPLES, WE USED APPROPRIATE UNPACKING TOOLS 

AVAILABLE ON THE WEB (E.G. WWW.WOODMANN.COM) TO 

ACQUIRE THE ORIGINAL CONTENT OF THE MALWARE.    

 Disassembly and analysis of malware: After 
checking all the malware and removing anomalies such as 
packers’ obfuscation, we loaded the samples in to the de-facto 
industry standard disassembler, IDA Pro (6.1) [12]. This 
reliable disassembler translates binary content and generates 
assembly language source code from the machine-executable 
file format. It supports a variety of executable formats for 
different processors and operating systems.   
  
 Extracting Opcode Information: After loading each 
malware sample into the IDA Pro and running the 
InstructionCounter [13], which is a modified plugin of the 
IDA disassembler, we extract the assembly function statistics. 
For each malware, one text file was generated, which 
contained the frequency of used assembly functions in the 
corresponding binary file. Subsequently, these text files were 
imported to a MS-Excel spreadsheet and were augmented with 
the complete list of x86 instruction list available at [14], 
totaling 681 assembly functions. The benign files produced 
around 2 million opcodes in more than 130 different 
categories. Eighty-five opcodes accounted for more than 
99.8% of opcodes found, 14 opcodes accounted for more than 
91% and the top 5 opcodes accounted for 67.7% of extracted 
opcodes.  
 Malware samples yielded more than 7 million 
opcodes and more than 163 various assembly functions were 
found. Table 3 shows some descriptive statistics of the 
samples. 
 

File Type 
Total 

Opcodes 
Opcodes  

found 
Top 14 Opcodes  

Goodware 
19798076 

 
>130 

mov(48%), call(7%),  jmp(4%), cmp(4%), 
jz(3%), test(3%), lea(3%), push(3%), 
add(3%), pop(3%), sub(2%), jnz(2%), 
movzx(1%), retn(1%) 

Viruses 932016 >141 

mov(23%), push(20%), call(10%), pop(10%) 
, cmp(4%), lea(4%), jz(4%), jmp(3%), 
test(3%) , jnz(3%), add(3%), xor(2%), 
retn(2%), sub(1%) 

Trojans 
3083467 

 
>146 

mov(28%), push(16%), call(9%), pop(6%), 
lea(4%), add(4%), cmp(4%), jmp(3%), 
jz(3%), xor(3%), sub(2%),test(2%), retn(2%), 
jnz(2%) 

Worms 
1043123 

 
>133 

mov(26%), push(21%), call(12%), lea(8%), 
pop(4%), cmp(4%), add(3%), jz(3%), 
jmp(3%), test(2%), jnz(2%), xor(2%), 
retn(2%), sub(1%) 

Ad-ware 1614391 >163 

mov(24%), push(17%), call(9%), pop(6%), 
cmp(6%), jz(4%), lea(4%), test(3%), jnz(3%), 
add(3%), jmp(3%), xor(2%), retn(2%), 
sub(1%) 

Rootkits 720072 100 mov(26%), push(19%), call(9%),pop(6%), 

nop(4%), lea(4%), cmp(3%), add(3%), 
jz(3%), xor(2%), jmp(2%), retn(2%), 
test(2%), jnz(2%) 

Table 3. Descriptive statistics of samples. 
 

 ANOVA and Duncan Multiple Range Tests: 
According to [41], more than 680 assembly opcodes are 
defined to date, but our observation revealed that only less 
than 200 opcodes are in use by our samples. In a Microsoft 
Excel spread sheet, a 300 X 681 contingency table was 
designed (rows: samples of different classes, columns: opcode 
frequencies).  In this phase we want to detect the effective 
opcodes and reduce the number of assembly functions that we 
are going to use as inputs of our classifier later. We also want 
to know if there is a statistically significant difference in 
opcode frequencies between software classes.  The null-
hypothesis and the alternative hypothesis were defined as 
following:  
 H0: Statistically, there is no significant difference 
between the opcode frequencies. 
 H1: Statistically, There are some associations 
between opcodes. 
 To determine the effectiveness and the significance of 
the opcodes, we used “ANOVA” (Analysis of variance) and 

“Duncan Multiple Range” tests. Since we have more than two 

variables, the ANOVA test was chosen to compare the 
variances of the samples. Afterwards the Duncan multiple 
range test was used to segment different treatments (i.e. 
opcodes), which more or less has same significance according 
to the differences in mean values. In statistics, Duncan's 
multiple range test (MRT) is a multiple comparison procedure 
developed by David B. Duncan in 1955. Duncan's MRT 
belongs to the general class of multiple comparison procedures 
that use the Studentized range statistic to compare sets of 
means. Before using the Duncan test we must ensure that there 
is statistically significant difference between variables 
frequencies. Analysis of variance (ANOVA) is a collection of 
statistical models, and their associated procedures, in which 
the observed variance in a particular variable is partitioned 
into components attributable to different sources of variation. 
ANOVA provides a statistical test of whether or not the means 
of multiple groups are all equal, and therefore it generalizes t-
test to more than two groups. Doing multiple two-sample t-
tests would result in an increased chance of committing a type 
I error. Therefore, ANOVA is useful in comparing several 
means. To analyze the variance of samples, all data from the 
Excel spread sheet was imported into IBM SPSS software and 
tests were run. Table 4 shows the result of the ANOVA test. 
 

Source 
Type III Sum 

of Squares 
df 

Mean 
Square 

F Sig. 

Corrected model 
Intercept 
Opcodes 

Error 
Total 

Corrected Total 

42.483a 
.418 

42.483 
8.383 

51.283 
50.865 

680 
1 

680 
193404 
194085 
194084 

.062 

.418 

.062 
4.334E-5 

1441.358 
9640.073 
1441.358 

.000 

.000 

.000 

a. R Squared = .835 (Adjusted R Squared = .835) 
Table 4. ANOVA test results. 
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 Result of the ANOVA test indicates that the 
significant level is less than 0.05, which rejects the null-
hypothesis (H0) and confirms the alternative hypothesis (HA). 
After observing the results of the ANOVA test, we run 
Duncan test to know the most significant and the least 
significant opcode groups. Generally the Duncan test is based 
on the idea that the means must be compared according to the 
variable range. In our experiment, the Duncan test grouped the 
opcodes into 27 segments based on their significance.  In this 
step we proved that opcodes are good malware predictors 
because statistically there are meaningful differences in 
opcode frequencies between samples of dissimilar classes. In 
addition, Duncan test helped us to segment opcodes. In this 
segmentation, functions belonging to each group have same 
significance, hence, practically only one member function is 
enough to represent the entire belonging segment. This simply 
reduces number of the effective opcodes from 681 to 27. 
Later, we use these 27 functions as inputs of our classifier. 
Table 5 shows the list of this selected opcodes. Each opcode is 
chosen from different segment so that it represents the entire 
belonging group.Table 5, summarizes the segments created by 
the Duncan multiple range test.  
 
 
 

Segment# Selected Opcode 
1 cmovnz(0.000123158) 
2 std(0.000135789) 
3 div(0.000376842) 
4 fldcw(0.000315088) 
5 cld(0.000332982) 
6 adc(0.000443860) 
7 cdq(0.000472281) 
8 jns(0.000595789) 
9 js(0.000778246) 

10 neg(0.000971930) 
11 fld(0.001556140) 
12 imul(0.001677895) 
13 nop(0.003014035) 
14 or(0.006754035) 
15 movzx(0.008841053) 
16 inc(0.009570526) 
17 retn(0.018785614) 
18 sub(0.019944211) 
19 jnz(0.022636842) 
20 test(0.029306316) 
21 add(0.032072281) 
22 jz(0.034317895) 
23 cmp(0.04137473) 
24 pop(0.045806667) 
25 call(0.092000351) 
26 push(0.12995614) 
27 mov(0.33630701) 

Table 5. Selected opcodes through the Duncan test 

 CLASSIFICATION OF THE SAMPLES:  THE LAST PHASE OF 

OUR EXPERIMENT IS TO DESIGN A MACHINE CLASSIFIER TO 

IDENTIFY MALWARE VERSUS GOODWARE. THIS CLASSIFICATION 

IS BASED ON DISSIMILARITIES OF THE OPCODE FREQUENCIES.  IN 

THIS STEP, BY USING MACHINE LEARNING TECHNIQUES SUCH AS THE 

DECISION TREES, WE TRIED TO AUTOMATE THE CLASSIFICATION TASK.  

 WE DID TWO SEPARATE CLASSIFICATIONS; FIRST WE DEFINED TWO 

DESIRED CLASS LABELS (BENIGN AND MALWARE) AND TESTED DIFFERENT 

ALGORITHMS ON OUR SAMPLES. SECONDLY WE DEFINED 6 DESIRED CLASS 

LABELS (BENIGN, VIRUS, TROJAN, WORM, ROOTKIT AND ADWARE) AND 

AGAIN WE DID THE CLASSIFICATION. IN BOTH SCENARIOS THE INPUTS OF 

CLASSIFIERS WERE THE FREQUENCIES OF OPCODES LISTED IN TABLE 5. 

decision tree classifier  

 A DECISION TREE IS A CLASSIFICATION TOOL THAT USES A 

TREE-LIKE GRAPH OR MODEL OF DECISIONS AND THEIR POSSIBLE 

CONSEQUENCES.  A DECISION TREE IS A FLOWCHART-LIKE TREE 

STRUCTURE, WHERE EACH INTERNAL NODE (NON-LEAF NODE) 

DENOTES A TEST ON AN ATTRIBUTE, EACH BRANCH REPRESENTS 

AN OUTCOME OF THE TEST, AND EACH LEAF NODE (OR 

TERMINAL NODE) HOLDS A CLASS LABEL. THE TOPMOST NODE IN 

A TREE IS THE ROOT NODE [15]. A DECISION TREE BUILT FROM A 

TRAINING SET CAN LATER BE USED TO CLASSIFY TRAINING AND 

RECALL PATTERNS. GIVEN A TUPLE X FOR WHICH THE 

ASSOCIATED CLASS LABEL IS UNKNOWN, THE ATTRIBUTE 

VALUES OF THE TUPLE ARE TESTED AGAINST THE DECISION 

TREE. A PATH IS TRACED FROM THE ROOT TO A LEAF NODE, 
WHICH HOLDS THE CLASS PREDICTION FOR THAT TUPLE. 
DECISION TREES CAN EASILY BE CONVERTED TO 

CLASSIFICATION RULES. DECISION TREE IS ONE OF THE MOST 

POPULAR CLASSIFICATION AND DECISION SUPPORT TOOLS. SOME 

OF ITS ADVANTAGES ARE AS FOLLOWING: [15] 

• TO CONSTRUCT A DECISION TREE THERE IS NO NEED OF 

PARAMETER SETTING. 

• DECISION TREES CAN HANDLE HIGH DIMENSIONAL DATA. 

• REPRESENTATION OF ACQUIRED KNOWLEDGE IN TREE FORM IS 

SIMPLE AND EASY TO ASSIMILATE BY HUMANS. 

• SIMPLE AND FAST LEARNING AND CLASSIFICATION PHASES.  

• HIGH CLASSIFICATION ACCURACY. 

• ABLE TO HANDLE BOTH NUMERICAL AND CATEGORICAL DATA. 

 TO CLASSIFY OUR SAMPLES USING DECISION TREES, WE 

CONVERTED OUR EXCEL DATABASE INTO THE CSV (COMMA-
SEPARATED VALUES) FORMAT AND THEN WE IMPORTED THIS 

DATA FILE INTO THE WEKA [16] SOFTWARE. WEKA IS A 

COLLECTION OF MACHINE LEARNING ALGORITHMS FOR DATA 

MINING TASKS AND IT CONTAINS TOOLS FOR DATA PRE-
PROCESSING, CLASSIFICATION, REGRESSION, CLUSTERING, 
ASSOCIATION RULES, AND VISUALIZATION. IT IS ALSO WELL-
SUITED FOR DEVELOPING NEW MACHINE LEARNING SCHEMES 

[16]. 

 WE TESTED VARIOUS DECISION TREE LEARNING 

ALGORITHMS, WHICH ARE AVAILABLE IN THE TREE CLASSIFIER 

PART OF THE WEKA SOFTWARE. THESE ALGORITHMS INCLUDE 

J48[17], J48-GRAFT[18], BFTREE[19], FT[20], LADTREE[21], 
LMT[22], NBTREE[23], RANDOM FORESTS [24] AND 
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RANDOMTREE, REPTREE[25], SIMPLECART[26] AND  

DECISIONSTUMP[27]. 

 ACCORDING TO OUR OBSERVATION, THE NB TREE AND 

RANDOM FOREST METHODS ACHIEVED THE BEST ACCURACY 

WITH MORE THAN 98% CLASSIFICATION SUCCESS RATE. TABLE 6 

SHOWS THE CLASSIFICATION INFORMATION OF THESE TWO 

ALGORITHMS. TABLE 7 AND TABLE 8 ALSO GIVE MORE DETAILS 

REGARDING THESE TWO METHODS. 

 
 
 

 Random Forest NB Tree 
Total Number of 

Instances 
300 300 

Correctly Classified 
Instances 

295 295 

(%) 98.33% 98.33% 

Incorrectly Classified 
Instances 

5 5 

(%) 1.66% 1.66% 

Kappa statistic 0.9622 0.9622 

Mean absolute error 0.0399 0.0192 

Root mean squared 
error 

0.1328 0.1273 

Relative absolute error 9.0114% 4.3406% 

Root relative squared 
error 

28.2375% 27.08% 

Table 6. Results of classification with two class labels using Random Forest 
and NBTree algorithms. 

 
 

Class 
Label 

TP 
Rate 

FP 
Rate 

Precision Recall F-
Measure 

ROC 
Area 

Malware 0.99 0.03 0.985 0.99 0.988 0.991 

Benign 0.97 0.01 0.98 0.97 0.975 0.991 

       

Weighted 
Avg. 

0.983 0.024 0.983 0.983 0.983 0.991 

Table 7. Detailed Accuracy Information of NBTree and Random Forest 
algorithm. 

 

Classified As  Malware Benign 
Malware 199 2 
Benign 3 96 

TABLE 8. CONFUSION MATRIX OF  NBTREE AND RANDOM FOREST CLASSIFIERS 

  
 Table 9, summarizes the experiment outcomes for the 
classification with six class labels including: Virus, Trojan, 
Adware, Worm, Rootkit and Benign. In this case, again the 
Random Forest algorithm yields the best accuracy with 
79.66% success rate. Table 10 recapitulates the detailed 
accuracy information of the Random Forest algorithm and 
table 11 shows the respective confusion matrix. 
 
 
 
 

 Random Forest 
Total Number of Instances 300 

Correctly Classified Instances 239 
(%) 79.66% 

Incorrectly Classified Instances 61 
(%) 20.33% 

Kappa statistic 0.7372 
Mean absolute error 0.0924 

Root mean squared error 0.22 
Relative absolute error 35.55% 

Root relative squared error 61.07% 
Table 9. Random Forest algorithm result. 

 
 
 
 
 

Table 10. Detailed Accuracy Information of the Random Forest Decision Tree 
Learning algorithm. 

 

Classified 
As  

Virus Adware Worm Benign Trojan Rootkit 

Virus 20 3 5 0 5 0 
Adware 3 22 0 0 7 0 
Worm 5 2 28 4 6 0 
Benign 0 0 1 97 1 0 
Trojan 4 4 4 3 59 2 
Rootkit 0 0 0 0 2 13 

Table 11.  Confusion Matrix of Random Forest Classifier. 

Conclusion and Future Work 
 In this paper we have presented a new method for 
differentiating between malware and benign files by means of 
decision tree classification technique. The inputs of our 
classifier were the opcode frequencies of our samples. The 
classification success rate was more than 98% which 
demonstrates the reliability of our proposed approach.  
 Instead of Opcode frequencies, other static features 
such as the API function calls can be used for the same 
purpose. In this research, the Duncan test is used to reduce the 
number of classification inputs. Other attribute selection 
methods may reduce inputs even more. Rather than decision 
tree, other classification techniques can be employed too.  
 In another research, we repeated the experiment and 
we used different classification methods such as ANN, SVM 
and Naive Bayes classifiers. We are going to publish the 
results of this trial too.  
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