
190

Malware Detection Through Decision Tree Classifier
Kamran Morovati, Sanjay Kadam

Abstract: The first part of this paper is devoted to a brief

introduction, terminology and a comparison between different
methods of preventing and detecting malware. The second portion
of this paper presents a new method for classifying malicious files
versus normal ones. Our approach is based on differences between
assembly op-code frequencies in malware and benign classes. We
have also utilized decision tree algorithms to simplify the
classification.

Keywords—Malware detection, Opcode frequencies, ANOVA
test, Duncan multiple range test, Decision tree classifier,

I. Introduction
Malware incidents cost organizations and industries

billions of dollars every year. In a 2012 worldwide survey on
the financial impacts of malware, more than 2,600 business
leaders and IT security practitioners were interviewed [1].
About 30% of participants thought a successful cyber-attack
can cause damage between 200,001 and 300,000 U.S. dollars.
Only 2 percent of respondents believed a single successful
cyber-attack would cost their company less than 10,000 U.S.
dollars. Malicious programs may seem like a relatively new
concept, but they started appearing on dedicated networks
such as ARPANET in the 1970s. In 1971, the Creeper virus
appeared. It was able to replicate itself and its function was to
display a simple message. The rabbit virus was another
instance in that decade. The Rabbit virus spread across a
network and generated copies of itself, impairing performance
until a computer crashed. The term “Computer Virus”
appeared in 1983 after Professor Len Adleman at Lehigh
University demonstrated the concept at a seminar. In 1987, the
Vienna Virus was introduced. It is the first virus that was able
to destroy data. Fred Cohen published his first article about
"Experiments with Computer Viruses" which were
incorporated into his PhD thesis, "Computer Viruses - Theory
and Experiments," published in 1986. His rather
mathematically-oriented definition of a virus is still
recognized today and does not encompass the negative
connotation that the term virus has acquired nowadays [2].

Kamran Morovati
Computer Science Department, Pune University
IRAN
k.morovati@gmail.com

Sanjay Kadam, CDAC-Pune
Computer Science Department, Pune University
INDIA
sskadam@cdac.in

In 1990, the Chameleon virus emerged. It is known as the
first polymorphic virus, which is able to change itself to avoid
detection. In 1991 more than 300 viruses were documented
and many antivirus products were introduced in the market.
During 1996 malware like Win32.HLLP.DeTroi relayed data
about compromised computers; thieves have stolen passwords
and have been controlling systems remotely since then. Since
the introduction of the web, E-mail and the Internet have
become the primary transmission vectors, as scripts
automatically load viruses from infected websites. In 2003
Slammer infected memory in computers worldwide through
the Internet, clogging networks and causing shutdowns. Since
2007 Botnets have infected millions of Internet users
worldwide. Zombie systems send spam and generate Denial of
Service (DoS) attacks, compromising credentials and data. It is
no wonder that today cyber security is the top concern of IT
managers [3].

Malware Types and Terminology
Malware, an abbreviation for “Malicious Software,” is

software used or designed to disrupt or deny computer
operations, gather sensitive information that leads to loss of
privacy or exploitation, or gain access to private computer
systems. It is a general term for any kind of hostile, intrusive,
or annoying software that can appear in the form of code,
scripts, active content, etc., and is able to infect a single
computer, server, or an entire computer network [4]. Malware
is usually categorized into “families” (referring to a particular
type of malware with unique characteristics) and “variants”
(usually a different version of code in a particular family).
Malware is put in an information system to cause harm or to
subvert that system for use in purposes other than intended by
their owners [5]. Malware includes computer viruses, worms,
Trojan horses, spyware, adware, rootkits, logic bombs, bots
and other malicious programs. In law, malware is sometimes
known as a computer contaminant [6]. Until a few years ago,
viruses and worms were the most common types of malware,
but nowadays other kinds have emerged and are extensively
distributed.

Computer Viruses: Viruses are programs that replicate
themselves. As soon as they execute, they make one or more
copies of themselves. If these copies are also executed, they
would reproduce even more copies. Usually a computer virus
attaches itself to other executable files. This will ensure more
efficient reproduction. Viruses must have two important parts
to survive. Firstly, they must have a search subroutine to
locate new files, disks, etc., in order to infect them. Secondly,
they must have another part to copy the virus body effectively
into the files which the search function locates. The most
commonly used technique consisted in appending the viral
code at the end of the executable file then modifying the entry

Proc. of the Intl. Conf. on Advances in Computer Science and Electronics Engineering — CSEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5461-7 doi:10.3850/ 978-981-07-5461-7_38

191

point to the point that viral code starts and finally resuming the
execution of the normal code.

Worms: Worms are self-replicating programs that are able
to replicate themselves, but unlike viruses, they do not infect
other files or programs. They typically use unpatched
vulnerabilities in network protocols and services such as email
to distribute themselves quickly without user intervention.
They also may use Auto-Run capability to propagate through
digital medias like USB Pen drives, CDs/DVDs, etc. By
consuming network bandwidth they may decrease the overall
performance or sometimes clog the entire network.

Trojan Horses: Trojans are another type of malicious
programs that masquerade as benign applications. Trojans use
some appealing functions to lure users to execute them. They
initially seem to perform desirable functions, but after
execution, in addition to the expected functions, they steal data
or damage the system. For example, a Trojan may appear like
a PC game but in fact after being run, it may allow a hacker
remote access to the victim’s system over a network. Trojans
could be used to install additional worms or viruses. These
kinds of Trojans are known as Droppers. Backdoor (Trapdoor)
Trojans also may be utilized by an intruder to gain a privileged
remote access to the system by opening a TCP/UDP network
port.

Logic Bombs: Typically, logic bombs are normal
programs which contain some hidden malfunctions. These
hidden malicious codes are intentionally inserted into the
software and can be triggered automatically when pre-
determined conditions are met. For example, a logic bomb
could be activated on a specific date and time and it might
delete particular file types or even execute another malware.

Rootkits: Rootkits are modified versions of popular
programs, tools or operating system files that have been
replaced with original ones by hackers as soon as breaking
into a system. They are designed to conceal the existence of
certain processes or programs from normal detection methods
and they mostly provide continuous privileged access to the
victim’s computer. Rootkits are categorized in different
classes depending on the level of operating system that they
are running in. User-mode rootkits run along with other user’s
applications in the application ring (Ring 3), while Kernel-
mode rootkits mainly run with the highest operating system
privileges (Ring 0) by adding code or replacing operating
system modules. The kernel-mode rootkits are often dangerous
since they can alter the behavior of the operating system
kernel. Therefore, it could be very difficult to detect them
because of their ability to hide themselves from even kernel-
level detector software.

Adware: An adware (advertising-supported software)
automatically downloads banner ads and adverts pop-ups. In
brief, any software that installs itself on the system without the
user’s knowledge and displays advertisements typically when
the user browses the Internet is called as adware. Adware, by
itself, is harmless; however, some may include integrated
spyware such as key loggers and other privacy invasive
software. Adware might be considered as a borderline case
between malware and normal software and is also known as
greyware [7].

Malware Detection Techniques
Nowadays, many anti-malware products from different

professional companies are available in the market. These
products utilize different techniques to combat malware. Anti-
virus solutions are commonly installed at the operating system
kernel level and generally consist of two fundamental
modules: a database of information regarding virus signatures
or common abnormal behaviors that viruses have and an
inspection engine that utilizes the database for detection
purposes.

Malware analysis methods can be categorized into two
main groups:

a) Static Analysis

b) Dynamic Analysis

The first method is the analysis of malware without
executing it. In this method, by collecting low level
information such as Assembly Op-code Frequencies, which
will be discussed later in this paper, Control Flow Graphs,
System Call Graphs, Data Flow Graphs or other types of
statistical data, we can analyze and detect malware. Many
disassemblers and debuggers can be used to extract low level
information. For instance, IDA Pro (Riesen and Bunker 2009)
is a disassembler, which generates assembly language source
code from machine-executable code. Static analysis is
relatively fast and safe. It also produces few false positive
errors. On the other hand, it has some disadvantages like the
possibility of not detecting metamorphic and/or unknown
viruses, which use code obfuscation techniques [8].

The second method is the analysis of suspected files during
their execution. Dynamic analysis uses virtual or simulated
environments, such as an emulator or a virtual machine, to
monitor the behavior and functionality of executable files. The
analysis environment must be invisible to the malware since
the malware writer may use an anti-virtual machine or an anti-
emulation tool to conceal their malware functions if they
suspect that they are under analysis. Dynamic analysis fails to
detect intended activities if the malware changes its behavior
depending on trigger conditions such as the presence of a
specific file or a specific day, as only a single execution path
may be examined in each attempt [8].

Anti-virus software can operate in two different modes
known as On-Demand and On-Access. On-Demand mode
allows user to activate the antivirus manually at any desirable
time, but On-Access mode automatically monitors system
objects that programs or operating system access for any
purpose. Table 1 summarizes the advantages and
disadvantages of the malware detection methods.

Proc. of the Intl. Conf. on Advances in Computer Science and Electronics Engineering — CSEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5461-7 doi:10.3850/ 978-981-07-5461-7_38

192

Detection/Prevention
Method

Advantage Disadvantage

Signature Based
Fast, accurate, few false

alarms

Not effective in the
case of new unknown

malware detection

Behavior Based New malware detection
High false alarm,
unproven

Code Emulation Based
Polymorphic/Metamorphic

detection
Costly to implement

Integrity Checking
Simple, high detection rate

on the file system

Slow, not
preventative, high false

alarms

Sandboxing Damage preventive
Not compatible with

all software

Table 1. Summary of the strength and weakness of malware detection
techniques.

Proposed Methodology
 In this section our proposed approach is described.
Our method is based on the differences between opcode
frequencies of the collected random samples of malicious and
normal files. Our experiment consists of following steps:

Step 1: Malicious and Non-malicious sample files collection.
Step 2: Malware unpacking.
Step 3: Disassembling the binary executables to retrieve the
assembly program.
Step 4: Extracting opcodes and calculating assembly function
frequencies from the assembly program.
Step 5: Creating a database of observed results for each group
of files and finding effective opcodes using the ANOVA and
Duncan Multiple Range Test.
Step 6: Testing different decision tree algorithms to choose
the best classifiers.

 Sample Collection: The first step of our experiment
consisted of collecting random samples of malware and
normal files. To gather normal files which constitute our
“Benign class”, Portable Executable (PE) files were selected
from two sources including the installed Cygwin software (a
collection of tools which provide a Linux look and feel
environment for Windows) and “System32” folder of MS-
Windows 7 Ultimate version. From listed files, which yielded
a normal distribution (based on file size), a total of 100 PE
samples were selected and placed into four-size blocks, with at
least 10 samples in each block. Regarding malware, five
classes of interest including Viruses, Trojans, Adware, Worms
and Rootkits were defined. Malware samples were collected
from various online virus repositories such as the VX-Heaven
website (the VX Heaven website at
http://vx.netlux.org/index.html is unreachable since
23.03.2012 due to police investigation) and the Virus Sign
website (http://www.virussign.com). Out of thousands of
malicious files, a total number of 200 malware from different
families were randomly chosen for further analysis. Table2
summarizes the malware samples’ information.

Malware

Class

Number
of

Samples
File Size Some Malware Families*

Virus 33
[10KB – 2

MB)
Win32/Tenga, Win32Neshta,

Win32/Chir, Win32/Sality, etc.

Trojan 76
[10KB – 2

MB)
Win32/Ripinip, Win32/Wisdoor,

Win32/Delf, Win32/SpyVoltar, etc.

Worm 45
[10KB –

1MB)
Win32/Mydoom.Q, Win32/Dabber,
Win32/Bflient, Win32Pronny, etc.

Rootkit 15
[10KB – 5

MB)
Win32/Obfuscated.NSPWGMH,

Win32/PSW, etc.

Adware 31
[10KB – 3

MB)

Win32/Adware.OneStep,
Win32/Adware.Gamevance,

Win32/Adware.GabPath,
Win32/Adware.Filenolja, etc.

Table 2. Malware Samples Information (* ESET NOD32 Antivirus)

 MALWARE UNPACKING: AFTER OBTAINING MALWARE, THE

NEXT STEP IS TO CHECK THE FILES FOR PACKING INFORMATION.
PACKERS ARE MAINLY USED TO OBFUSCATE MALWARE SOURCE

CODE OR TO COMPRESS THE EXECUTABLES. MALWARE

DEVELOPERS USE PACKING TECHNIQUES AS A CHEAP AND EASY

WAY OF TURNING A KNOWN PIECE OF MALWARE INTO

SOMETHING NEW, WHICH MALWARE SCANNERS CAN'T DETECT.
EXISTING COMMERCIAL MALWARE SCANNERS SEARCH BINARY

FILES FOR PREDEFINED SIGNATURES, BUT OBFUSCATED

MALWARE USES PACKERS TO PROTECT THEIR INTERNAL CODE

AND DATA STRUCTURES. PACKERS COMPRESS AND ENCRYPT THE

PE FILE IN THE SECONDARY MEMORY AND RESTORE THE

ORIGINAL EXECUTABLE IMAGE WHEN LOADED INTO MAIN

MEMORY (RAM) [9]. SOME MALWARE USES MULTIPLE PACKING

TRANSFORMATIONS TOGETHER, WHICH MAKE THE AMOUNT OF

WORK NECESSARY TO EMULATE THE FULL UNPACKING

OPERATION MUCH MORE EXPENSIVE AND TIME CONSUMING.
SOME PACKERS SHRINK FILE SIZE THROUGH COMPRESSION. FOR

EXAMPLE, UPACK IS A WINDOWS-BASED COMPRESSION PACKER;
IT COMPRESSES PE-FORMATTED FILES WITH VERY HIGH

COMPRESSION RATES. MANY MALWARES HAVE USED IT TO

AVOID DETECTION [10]. THE ULTIMATE PACKER FOR

EXECUTABLES (UPX; HTTP://UPX.SOURCEFORGE.NET), AND

ASPACK (WWW.ASPACK.COM) ARE SOME OTHER KNOWN

EXAMPLES OF THIS GROUP. YODA’S CRYPTER

(HTTP://YODAP.SOURCEFORGE.NET) AND POLYCRYPT PE

(WWW.JLABSOFTWARE.COM) ARE POPULAR EXAMPLES OF THE

CRYPTER PACKERS. PROTECTORS FEATURE BOTH COMPRESSORS

AND CRYPTER PACKERS. SOME COMMERCIAL PROTECTORS,
SUCH AS ARMADILLO (WWW.SILICONREALMS.COM) AND

THEMIDA (WWW.OREANS.COM), ARE IN THIS GROUP. FINALLY,
BOUNDLER PACKERS PACK MULTIPLE EXE FILES AND DATA FILES

INTO ONE EXECUTABLE FILE. PEBUNDLE

(WWW.BITSUM.COM/PEBUNDLE.ASP) AND MOLEBOX

(WWW.MOLEBOX.COM) ARE SOME EXAMPLES OF THIS CLASS

[10]. BY MEANS OF SOME NATIVE DEBUGGING TOOLS SUCH AS

IDA PRO AND OLLYDBG (WWW.OLLYDBG.DE), WE CAN READ THE

SECTION NAMES IN THE SECTION TABLE OF A PE HEADER, TO

FIND OUT IF A PARTICULAR PE FILE IS PACKED OR NOT. SOME

UNDERGROUND TOOLS ARE ALSO AVAILABLE, WHICH CAN

AUTOMATICALLY EXTRACT PACKING INFORMATION OF A GIVEN

PE FILE. IN OUR PROJECT SEVERAL TOOLS, SUCH AS THE PEID[11]

AND THE EXEINFO-PE (HTTP://WWW.EXEINFO.ANTSERVE.COM),

Proc. of the Intl. Conf. on Advances in Computer Science and Electronics Engineering — CSEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-2950-9 doi:10.3850/ 978-981-07-2950-9 123

Proc. of the Intl. Conf. on Advances in Computer Science and Electronics Engineering — CSEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5461-7 doi:10.3850/ 978-981-07-5461-7_38

193

WERE USED TO AUGMENT COMPILER AND PACKER INFORMATION

TO THE DATABASE. PEID IS A DETECTOR USED FOR MOST

COMMON PACKERS, CRYPTORS, COMPILERS AND EVEN

SIGNATURE-BASED PACKER DETECTION IN PE FILES. THE RESULT

OF ANALYZING OUR MALWARE USING PEID SHOWED THAT

AROUND 63% OF SAMPLES WERE PACKED.

 AFTER RETRIEVING THE PACKING INFORMATION OF OUR

SAMPLES, WE USED APPROPRIATE UNPACKING TOOLS

AVAILABLE ON THE WEB (E.G. WWW.WOODMANN.COM) TO

ACQUIRE THE ORIGINAL CONTENT OF THE MALWARE.

 Disassembly and analysis of malware: After
checking all the malware and removing anomalies such as
packers’ obfuscation, we loaded the samples in to the de-facto
industry standard disassembler, IDA Pro (6.1) [12]. This
reliable disassembler translates binary content and generates
assembly language source code from the machine-executable
file format. It supports a variety of executable formats for
different processors and operating systems.

 Extracting Opcode Information: After loading each
malware sample into the IDA Pro and running the
InstructionCounter [13], which is a modified plugin of the
IDA disassembler, we extract the assembly function statistics.
For each malware, one text file was generated, which
contained the frequency of used assembly functions in the
corresponding binary file. Subsequently, these text files were
imported to a MS-Excel spreadsheet and were augmented with
the complete list of x86 instruction list available at [14],
totaling 681 assembly functions. The benign files produced
around 2 million opcodes in more than 130 different
categories. Eighty-five opcodes accounted for more than
99.8% of opcodes found, 14 opcodes accounted for more than
91% and the top 5 opcodes accounted for 67.7% of extracted
opcodes.
 Malware samples yielded more than 7 million
opcodes and more than 163 various assembly functions were
found. Table 3 shows some descriptive statistics of the
samples.

File Type
Total

Opcodes
Opcodes

found
Top 14 Opcodes

Goodware
19798076

>130

mov(48%), call(7%), jmp(4%), cmp(4%),
jz(3%), test(3%), lea(3%), push(3%),
add(3%), pop(3%), sub(2%), jnz(2%),
movzx(1%), retn(1%)

Viruses 932016 >141

mov(23%), push(20%), call(10%), pop(10%)
, cmp(4%), lea(4%), jz(4%), jmp(3%),
test(3%) , jnz(3%), add(3%), xor(2%),
retn(2%), sub(1%)

Trojans
3083467

>146

mov(28%), push(16%), call(9%), pop(6%),
lea(4%), add(4%), cmp(4%), jmp(3%),
jz(3%), xor(3%), sub(2%),test(2%), retn(2%),
jnz(2%)

Worms
1043123

>133

mov(26%), push(21%), call(12%), lea(8%),
pop(4%), cmp(4%), add(3%), jz(3%),
jmp(3%), test(2%), jnz(2%), xor(2%),
retn(2%), sub(1%)

Ad-ware 1614391 >163

mov(24%), push(17%), call(9%), pop(6%),
cmp(6%), jz(4%), lea(4%), test(3%), jnz(3%),
add(3%), jmp(3%), xor(2%), retn(2%),
sub(1%)

Rootkits 720072 100 mov(26%), push(19%), call(9%),pop(6%),

nop(4%), lea(4%), cmp(3%), add(3%),
jz(3%), xor(2%), jmp(2%), retn(2%),
test(2%), jnz(2%)

Table 3. Descriptive statistics of samples.

 ANOVA and Duncan Multiple Range Tests:
According to [41], more than 680 assembly opcodes are
defined to date, but our observation revealed that only less
than 200 opcodes are in use by our samples. In a Microsoft
Excel spread sheet, a 300 X 681 contingency table was
designed (rows: samples of different classes, columns: opcode
frequencies). In this phase we want to detect the effective
opcodes and reduce the number of assembly functions that we
are going to use as inputs of our classifier later. We also want
to know if there is a statistically significant difference in
opcode frequencies between software classes. The null-
hypothesis and the alternative hypothesis were defined as
following:
 H0: Statistically, there is no significant difference
between the opcode frequencies.
 H1: Statistically, There are some associations
between opcodes.
 To determine the effectiveness and the significance of
the opcodes, we used “ANOVA” (Analysis of variance) and

“Duncan Multiple Range” tests. Since we have more than two

variables, the ANOVA test was chosen to compare the
variances of the samples. Afterwards the Duncan multiple
range test was used to segment different treatments (i.e.
opcodes), which more or less has same significance according
to the differences in mean values. In statistics, Duncan's
multiple range test (MRT) is a multiple comparison procedure
developed by David B. Duncan in 1955. Duncan's MRT
belongs to the general class of multiple comparison procedures
that use the Studentized range statistic to compare sets of
means. Before using the Duncan test we must ensure that there
is statistically significant difference between variables
frequencies. Analysis of variance (ANOVA) is a collection of
statistical models, and their associated procedures, in which
the observed variance in a particular variable is partitioned
into components attributable to different sources of variation.
ANOVA provides a statistical test of whether or not the means
of multiple groups are all equal, and therefore it generalizes t-
test to more than two groups. Doing multiple two-sample t-
tests would result in an increased chance of committing a type
I error. Therefore, ANOVA is useful in comparing several
means. To analyze the variance of samples, all data from the
Excel spread sheet was imported into IBM SPSS software and
tests were run. Table 4 shows the result of the ANOVA test.

Source
Type III Sum

of Squares
df

Mean
Square

F Sig.

Corrected model
Intercept
Opcodes

Error
Total

Corrected Total

42.483a
.418

42.483
8.383

51.283
50.865

680
1

680
193404
194085
194084

.062

.418

.062
4.334E-5

1441.358
9640.073
1441.358

.000

.000

.000

a. R Squared = .835 (Adjusted R Squared = .835)
Table 4. ANOVA test results.

Proc. of the Intl. Conf. on Advances in Computer Science and Electronics Engineering — CSEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5461-7 doi:10.3850/ 978-981-07-5461-7_38

194

 Result of the ANOVA test indicates that the
significant level is less than 0.05, which rejects the null-
hypothesis (H0) and confirms the alternative hypothesis (HA).
After observing the results of the ANOVA test, we run
Duncan test to know the most significant and the least
significant opcode groups. Generally the Duncan test is based
on the idea that the means must be compared according to the
variable range. In our experiment, the Duncan test grouped the
opcodes into 27 segments based on their significance. In this
step we proved that opcodes are good malware predictors
because statistically there are meaningful differences in
opcode frequencies between samples of dissimilar classes. In
addition, Duncan test helped us to segment opcodes. In this
segmentation, functions belonging to each group have same
significance, hence, practically only one member function is
enough to represent the entire belonging segment. This simply
reduces number of the effective opcodes from 681 to 27.
Later, we use these 27 functions as inputs of our classifier.
Table 5 shows the list of this selected opcodes. Each opcode is
chosen from different segment so that it represents the entire
belonging group.Table 5, summarizes the segments created by
the Duncan multiple range test.

Segment# Selected Opcode
1 cmovnz(0.000123158)
2 std(0.000135789)
3 div(0.000376842)
4 fldcw(0.000315088)
5 cld(0.000332982)
6 adc(0.000443860)
7 cdq(0.000472281)
8 jns(0.000595789)
9 js(0.000778246)

10 neg(0.000971930)
11 fld(0.001556140)
12 imul(0.001677895)
13 nop(0.003014035)
14 or(0.006754035)
15 movzx(0.008841053)
16 inc(0.009570526)
17 retn(0.018785614)
18 sub(0.019944211)
19 jnz(0.022636842)
20 test(0.029306316)
21 add(0.032072281)
22 jz(0.034317895)
23 cmp(0.04137473)
24 pop(0.045806667)
25 call(0.092000351)
26 push(0.12995614)
27 mov(0.33630701)

Table 5. Selected opcodes through the Duncan test

 CLASSIFICATION OF THE SAMPLES: THE LAST PHASE OF

OUR EXPERIMENT IS TO DESIGN A MACHINE CLASSIFIER TO

IDENTIFY MALWARE VERSUS GOODWARE. THIS CLASSIFICATION

IS BASED ON DISSIMILARITIES OF THE OPCODE FREQUENCIES. IN

THIS STEP, BY USING MACHINE LEARNING TECHNIQUES SUCH AS THE

DECISION TREES, WE TRIED TO AUTOMATE THE CLASSIFICATION TASK.

 WE DID TWO SEPARATE CLASSIFICATIONS; FIRST WE DEFINED TWO

DESIRED CLASS LABELS (BENIGN AND MALWARE) AND TESTED DIFFERENT

ALGORITHMS ON OUR SAMPLES. SECONDLY WE DEFINED 6 DESIRED CLASS

LABELS (BENIGN, VIRUS, TROJAN, WORM, ROOTKIT AND ADWARE) AND

AGAIN WE DID THE CLASSIFICATION. IN BOTH SCENARIOS THE INPUTS OF

CLASSIFIERS WERE THE FREQUENCIES OF OPCODES LISTED IN TABLE 5.

decision tree classifier

 A DECISION TREE IS A CLASSIFICATION TOOL THAT USES A

TREE-LIKE GRAPH OR MODEL OF DECISIONS AND THEIR POSSIBLE

CONSEQUENCES. A DECISION TREE IS A FLOWCHART-LIKE TREE

STRUCTURE, WHERE EACH INTERNAL NODE (NON-LEAF NODE)

DENOTES A TEST ON AN ATTRIBUTE, EACH BRANCH REPRESENTS

AN OUTCOME OF THE TEST, AND EACH LEAF NODE (OR

TERMINAL NODE) HOLDS A CLASS LABEL. THE TOPMOST NODE IN

A TREE IS THE ROOT NODE [15]. A DECISION TREE BUILT FROM A

TRAINING SET CAN LATER BE USED TO CLASSIFY TRAINING AND

RECALL PATTERNS. GIVEN A TUPLE X FOR WHICH THE

ASSOCIATED CLASS LABEL IS UNKNOWN, THE ATTRIBUTE

VALUES OF THE TUPLE ARE TESTED AGAINST THE DECISION

TREE. A PATH IS TRACED FROM THE ROOT TO A LEAF NODE,
WHICH HOLDS THE CLASS PREDICTION FOR THAT TUPLE.
DECISION TREES CAN EASILY BE CONVERTED TO

CLASSIFICATION RULES. DECISION TREE IS ONE OF THE MOST

POPULAR CLASSIFICATION AND DECISION SUPPORT TOOLS. SOME

OF ITS ADVANTAGES ARE AS FOLLOWING: [15]

• TO CONSTRUCT A DECISION TREE THERE IS NO NEED OF

PARAMETER SETTING.

• DECISION TREES CAN HANDLE HIGH DIMENSIONAL DATA.

• REPRESENTATION OF ACQUIRED KNOWLEDGE IN TREE FORM IS

SIMPLE AND EASY TO ASSIMILATE BY HUMANS.

• SIMPLE AND FAST LEARNING AND CLASSIFICATION PHASES.

• HIGH CLASSIFICATION ACCURACY.

• ABLE TO HANDLE BOTH NUMERICAL AND CATEGORICAL DATA.

 TO CLASSIFY OUR SAMPLES USING DECISION TREES, WE

CONVERTED OUR EXCEL DATABASE INTO THE CSV (COMMA-
SEPARATED VALUES) FORMAT AND THEN WE IMPORTED THIS

DATA FILE INTO THE WEKA [16] SOFTWARE. WEKA IS A

COLLECTION OF MACHINE LEARNING ALGORITHMS FOR DATA

MINING TASKS AND IT CONTAINS TOOLS FOR DATA PRE-
PROCESSING, CLASSIFICATION, REGRESSION, CLUSTERING,
ASSOCIATION RULES, AND VISUALIZATION. IT IS ALSO WELL-
SUITED FOR DEVELOPING NEW MACHINE LEARNING SCHEMES

[16].

 WE TESTED VARIOUS DECISION TREE LEARNING

ALGORITHMS, WHICH ARE AVAILABLE IN THE TREE CLASSIFIER

PART OF THE WEKA SOFTWARE. THESE ALGORITHMS INCLUDE

J48[17], J48-GRAFT[18], BFTREE[19], FT[20], LADTREE[21],
LMT[22], NBTREE[23], RANDOM FORESTS [24] AND

Proc. of the Intl. Conf. on Advances in Computer Science and Electronics Engineering — CSEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5461-7 doi:10.3850/ 978-981-07-5461-7_38

195

RANDOMTREE, REPTREE[25], SIMPLECART[26] AND

DECISIONSTUMP[27].

 ACCORDING TO OUR OBSERVATION, THE NB TREE AND

RANDOM FOREST METHODS ACHIEVED THE BEST ACCURACY

WITH MORE THAN 98% CLASSIFICATION SUCCESS RATE. TABLE 6

SHOWS THE CLASSIFICATION INFORMATION OF THESE TWO

ALGORITHMS. TABLE 7 AND TABLE 8 ALSO GIVE MORE DETAILS

REGARDING THESE TWO METHODS.

 Random Forest NB Tree
Total Number of

Instances
300 300

Correctly Classified
Instances

295 295

(%) 98.33% 98.33%

Incorrectly Classified
Instances

5 5

(%) 1.66% 1.66%

Kappa statistic 0.9622 0.9622

Mean absolute error 0.0399 0.0192

Root mean squared
error

0.1328 0.1273

Relative absolute error 9.0114% 4.3406%

Root relative squared
error

28.2375% 27.08%

Table 6. Results of classification with two class labels using Random Forest
and NBTree algorithms.

Class
Label

TP
Rate

FP
Rate

Precision Recall F-
Measure

ROC
Area

Malware 0.99 0.03 0.985 0.99 0.988 0.991

Benign 0.97 0.01 0.98 0.97 0.975 0.991

Weighted
Avg.

0.983 0.024 0.983 0.983 0.983 0.991

Table 7. Detailed Accuracy Information of NBTree and Random Forest
algorithm.

Classified As  Malware Benign
Malware 199 2
Benign 3 96

TABLE 8. CONFUSION MATRIX OF NBTREE AND RANDOM FOREST CLASSIFIERS

 Table 9, summarizes the experiment outcomes for the
classification with six class labels including: Virus, Trojan,
Adware, Worm, Rootkit and Benign. In this case, again the
Random Forest algorithm yields the best accuracy with
79.66% success rate. Table 10 recapitulates the detailed
accuracy information of the Random Forest algorithm and
table 11 shows the respective confusion matrix.

 Random Forest
Total Number of Instances 300

Correctly Classified Instances 239
(%) 79.66%

Incorrectly Classified Instances 61
(%) 20.33%

Kappa statistic 0.7372
Mean absolute error 0.0924

Root mean squared error 0.22
Relative absolute error 35.55%

Root relative squared error 61.07%
Table 9. Random Forest algorithm result.

Table 10. Detailed Accuracy Information of the Random Forest Decision Tree
Learning algorithm.

Classified
As 

Virus Adware Worm Benign Trojan Rootkit

Virus 20 3 5 0 5 0
Adware 3 22 0 0 7 0
Worm 5 2 28 4 6 0
Benign 0 0 1 97 1 0
Trojan 4 4 4 3 59 2
Rootkit 0 0 0 0 2 13

Table 11. Confusion Matrix of Random Forest Classifier.

Conclusion and Future Work
 In this paper we have presented a new method for
differentiating between malware and benign files by means of
decision tree classification technique. The inputs of our
classifier were the opcode frequencies of our samples. The
classification success rate was more than 98% which
demonstrates the reliability of our proposed approach.
 Instead of Opcode frequencies, other static features
such as the API function calls can be used for the same
purpose. In this research, the Duncan test is used to reduce the
number of classification inputs. Other attribute selection
methods may reduce inputs even more. Rather than decision
tree, other classification techniques can be employed too.
 In another research, we repeated the experiment and
we used different classification methods such as ANN, SVM
and Naive Bayes classifiers. We are going to publish the
results of this trial too.

ACKNOLEDGMENT

 A special thank of ours goes to Dr. Daniel Bilar from
Wellesley College (MA, USA) who helped us regarding

Class
Label

TP
Rate

FP
Rate

Precision Recall F-
Measure

ROC
Area

Virus 0.606 0.045 0.625 0.606 0.615 0.888

Adware 0.688 0.034 0.71 0.688 0.698 0.919

Worm 0.622 0.039 0.737 0.622 0.675 0.864

Benign 0.98 0.035 0.933 0.98 0.956 0.984

Trojan 0.776 0.094 0.738 0.776 0.756 0.932

Rootkit 0.867 0.007 0.867 0.867 0.867 0.923

Weighted

Avg.
0.797 0.05 0.793 0.797 0.794 0.932

Proc. of the Intl. Conf. on Advances in Computer Science and Electronics Engineering — CSEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5461-7 doi:10.3850/ 978-981-07-5461-7_38

196

malware collection. His previous work [28] made our research
easier. We also wish to gratefully thank Mrs. Amy Da Siilva
for her editing assistance.

REFERENCES
[1] Financial Damage Caused by Cyber Attacks in the United States.

http://www.statista.com/statistics/193444/financial-damage-caused-by-
cyber-attacks-in-the-us/

[2] Fred Cohen, PhD thesis: “Computer Viruses - Theory and Experiments”,
1984. http://all.net/books/virus/index.

[3] Samuel Greengard, A Brief History of Malware, 2010-03-17.

[4] Robert Moir, Defining Malware.
http://technet.microsoft.com/en-us/library/dd632948.aspx

[5] ITU Study on the Financial Aspects of Network Security: Malware and
Spam, Final Report July 2008. www.itu.int/ITU-
D/cyb/cybersecurity/docs/itu-study-financial-aspects-of-malware-and-
spam.pdf

[6] USA National Conference of State Legislatures.
 http://www.ncsl.org/issues-research/telecom/state-virus-and-computer-
contaminant-laws.aspx

[7] Tulloch, Mitch (2003). Koch, Jeff; Haynes, Sandra. eds. Microsoft
Encyclopedia of Security. Redmond, Washington: Microsoft Press. p.
16. ISBN 0-7356-1877-1.

[8] Egele, M., T. Scholte, E. Kirda and C. Kruegel, A survey on automated
dynamic malware analysis techniques and tools, 2011. ACM Comput.
Surv., 5: 1- 49

[9] Sharif, M.; Yegneswaran, V.; Saidi, H.; Porras, P. & Lee, W., "Eureka:
A framework for enabling static malware analysis", Computer Security -
ESORICS, Lecture Notes in Computer Science LNCS, Springer, 008,
5283/2008, 481-500.

[10] Wei Yan, Zheng Zhang, Nirwan Ansari, “Revealing Packed Malware”,
Secure Systems, Published by the IEEE Computer Society, Volume: 6 ,
Issue:5, PP: 65 – 69, ISSN : 1540-7993, Sept. 2008

[11] Snaker et al, PEiD, V 0.95.
http://www.woodmann.com/collaborative/tools/index.php/Category:Pac
ker_Identifiers, 2008.

[12] IDA Pro Dissasember, Hex-Rays, An Advanced Interactive
Multiprocessor Disassembler, http://www.hex-rays.com, October, 2012.

[13] Porst, S., InstructionCounter v.1.02 (IDA Plugin), 2006,
http://www.the-interweb.com/serendipity/index.php?/archives/62-IDA-
InstructionCounter-plugin-1.02.html

[14] Wikipedia, x86 instruction listings, Accessed May 2012,
http://en.wikipedia.org/wiki/X86_instruction_listings

[15] Jiawei Han and Micheline Kamber, Data Mining: Concepts and
Techniques, 2nd edition, Publisher: Morgan-Kufmann ISBN 13: 978-1-
55860-901-3

[16] WEKA, The University of Waikato,
http://www.cs.waikato.ac.nz/~ml/weka/

[17] Ross Quinlan (1993). C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers, San Mateo, CA.

[18] Geoff Webb: Decision Tree Grafting From the All-Tests-But-One
Partition. In: , San Francisco, CA, 1999.

[19] Haijian Shi (2007). Best-first decision tree learning. Hamilton, NZ.

[20] Niels Landwehr, Mark Hall, Eibe Frank (2005). Logistic Model Trees.

[21] Geoffrey Holmes, Bernhard Pfahringer, Richard Kirkby, Eibe Frank,
Mark Hall: Multiclass alternating decision trees. In: ECML, 161-172,
2001.

[22] Niels Landwehr, Mark Hall, Eibe Frank (2005). Logistic Model Trees.
Machine Learning. 95(1-2):161-205.

[23] Ron Kohavi: Scaling Up the Accuracy of Naive-Bayes Classifiers: A
Decision-Tree Hybrid. In: Second International Conference on
Knowledge Discovery and Data Mining, 202-207, 1996.

[24] Leo Breiman (2001). Random Forests. Machine Learning. 45(1):5-32.

[25] REPTree Algorithm,
http://weka.sourceforge.net/doc/weka/classifiers/trees/REPTree.html

[26] Leo Breiman, Jerome H. Friedman, Richard A. Olshen, Charles J. Stone
(1984). Classification and Regression Trees. Wadsworth International
Group, Belmont, California.

[27] Decision Stump Algorithm,
http://weka.sourceforge.net/doc/weka/classifiers/trees/DecisionStump.ht
ml

[28] Bilar, D. (2007) “opcodes as predictor for malware”, Int. J. Elctronic
Security and Digital Forensics, Vol.1, No.2 , pp. 156-168.

About Authors:

Kamran Morovati is a senior network administrator
and information security researcher. He is a Ph.D
candidate (computer science) in Department of
Computer Science–University of Pune. He has a M.
Tech. in Information Technology from Amirkabir
University of technology (Tehran Polytechnic) and
BE in software engineering from Samsipour
University of Technology (Tehran). His research
interests include Information Security, Computer
Networks, Soft Computing and Data Mining.

Dr. Sanjay Kadam works as a Joint Director in the
Evolutionary Computing and Image Processing
Group at C-DAC, Pune. He has a M. Sc. in
Mathematics from Pune University, an M.Tech in
Computer Science from IIT, New Delhi, and a Ph.D
in Computer Science from the University of
London. His research interests include Image
Processing, Parallel Processing, Neural Networks,
and Soft computing.

Proc. of the Intl. Conf. on Advances in Computer Science and Electronics Engineering — CSEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5461-7 doi:10.3850/ 978-981-07-5461-7_38

