
100

Container Architecture for Detection and
Prevention of Intrusions using virtualization

technique

Abstract- Network Intrusion Detection Systems
(IDSs) which are based on sophisticated algorithms
rather than current signature-base detections are in
demand. Web services have moved to a multi-tiered
design wherein the webserver runs the application
front-end logic and data are outsourced to a
database or file server in order to enable
communication and the management of personal
information from anywhere. The proposed system is
Container based Intrusion Detection System, an
IDS system that models the network behavior of
user sessions across both the front-end webserver
and the back-end database. This system used to
detect attacks in multi-tiered web services. Our
approach can create normality models of isolated
user sessions that include both the web front-end
(HTTP) and back-end (File or SQL) network
transactions. For websites that do not permit
content modification from users, there is a direct
causal relationship between the requests received by
the front-end webserver and those generated for the
database back end. Virtualization is used to isolate
objects and enhance security performance.
Lightweight containers can have considerable
performance advantages over full virtualization
containers.

Keywords—doubleguard, multi-tiered web services,
virtualization.

S.Saravanan Department of Computer Science Engineering
,R.M.K.C.E.T

M.Ramakrishnan Department of Information Technology

Baskar.M Department of Information Technology R.M.K.C.E.T
R.S.M Nagar,Puduvoyal-601 206(T.N). INDIA

Gnanasekaran.T Department of Information Technology
,R.M.K.C.E.T, R.S.M Nagar,Puduvoyal-601 206(T.N). INDIA

 I. Introduction

Web applications are the most common way to make
services and data available on the Internet.
Unfortunately, with the increase in the number and

complexity of these applications, there has also been
an increase in the number and complexity of
vulnerabilities. Current techniques to identify
security problems in web applications have mostly
focused on input validation flaws, such as cross site
scripting and SQL injection, with much less attention
devoted to application logic vulnerabilities.
Application logic vulnerabilities are an important
class of defects that are the result of faulty
application logic [2]. These vulnerabilities are
specific to the functionality of particular web
applications, and, thus, they are extremely difficult to
characterize and identify. Learning-based anomaly
detection has proven to be an effective black-box
technique for detecting unknown attacks. However,
the effectiveness of this technique crucially depends
upon both the quality and the completeness of the
training data. Unfortunately, in most cases, the traffic
to the system protected by an anomaly detector is not
uniformly distributed. Therefore, some components
(e.g., authentication, payments, or content
publishing) might not be exercised enough to train
anomaly detection system in a reasonable time frame.
This is of particular importance in real-world
settings, where anomaly detection systems are
deployed with little or no manual configuration, and
they are expected to automatically learn the normal
behavior of a system to detect or block attacks. In this
work, we first demonstrate that the features utilized
to train a learning-based detector can be semantically
grouped, and that features of the same group tend to
induce similar models [6].

 II. Motivation

 Some previous approaches have detected
intrusions or vulnerabilities by statically analyzing
the source code or executables [1]. Other approaches
dynamically track the information flow to understand
propagations and detect intrusions [3]. In the
DoubleGuard, the new container-based webserver
architecture enables us to separate the different
information flows by each session. This provides a
means of tracking the information flow from the

Proc. of the Intl. Conf. on Advances in Computer Science and Electronics Engineering — CSEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5461-7 doi:10.3850/ 978-981-07-5461-7_21

101

webserver to the database server for each session.
Our approach also does not require us to analyze the
source code or know the application logic. For the
static webpage, our proposed approach does not
require application logic for building a model.

 Validating input is useful to detect or prevent
SQL or Cross Site Scripting (XSS) injection attacks.
This is orthogonal to the DoubleGuard approach,
which can utilize input validation as an additional
defense [7]. However, we have found that
DoubleGuard can detect SQL injection attacks by
taking the structures of web requests and database
queries.

 III. Our Approach

 In the proposed model, Static Model building
algorithm is used. It employs a virtualization
technique to web request with the subsequent DB
queries. Thus, Our proposed architecture in Fig.1 can
build a causal mapping profile by taking both the
webserver and DB traffic into account. In addition to
this static website case, there are web services that
permit persistent back-end data modifications. These
services, which we call dynamic, allow HTTP
requests to include parameters that are variable and
depend on user input. Lightweight virtualization
technique is to assign each user‟s web session to a

dedicated container, an isolated virtual computing
environment.

A. User interface:

 This main module is responsible for accepting
user queries and to generate http requests. This
module is also responsible for displaying the query
results to the user after the query has been executed
by the web server.

B. Query classifier:

 This module is deployed between web based
applications and the back-end database server. The
SQL queries sent by the applications are captured and
sent to the IDS for analysis. The query classifier
module parses each incoming SQL queries that are
variable and depend on user input.

C. Fuzzy anomaly detection
module:

 The fuzzy decision manager first extracts from
the requested URL, the path to the web application
being invoked, along with the arguments passed to it.

 Fig.1 Container based IDS architecture

The fuzzy decision manager then looks up the profile
associated with the web application. A profile is a
collection of statistics associated with one specific
web application. The fuzzy decision manager present
in the profile is a set of keys and scores used to
evaluate the features of a query and operate in one of
two modes, learning or detection. In the learning
phase we use C4.5 classification technique which
models and builds a profile of the “normal”

Characteristics of a given feature of a query (e.g., the
normal lengths of values for attributes),[4] setting a
dynamic detection threshold for the attributes. During
the detection phase, models return an anomaly score
for each observed example of attribute values using
the fuzzy rules generated from the training phase.
This is just a probability value in the range of 0-1
indicating the degree of anomaly of the observed
value in relation to the existing profile for that query
which is computed using a fuzzy logic decision
manager.

D. Access control manager:

 The architecture of this anomaly detection
system necessitates the existence of an access control
manager between the query classification component
and web servers. This manager is utilized when a
malicious web request that was let through by the
query classifier to access the web server which can be
checked for privilege level using anomaly score. In
this system, access control can choose to update
privilege levels of the web request to control
malicious requests. This process involves
characterizing the incoming anomaly using fuzzy
rules and then generating updating messages and
finally updating the access privilege levels to reflect
the level of anomaly. In this three access levels
namely privilege user lever, application programmer
level and naïve user level are used. Queries with

Proc. of the Intl. Conf. on Advances in Computer Science and Electronics Engineering — CSEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5461-7 doi:10.3850/ 978-981-07-5461-7_21

102

privilege user and application programmer level are
sent to the smart server whereas the queries with
naïve user levels are sent to dump server.

 IV. Testing for Websites

 Once the model is built, it can be used to
detect malicious sessions. For our static website
testing, we used the production website, which has
regular visits of around 50-100 sessions per day. We
collected regular traffic for this production site we

used the attack tools listed in to manually launch
attacks against the testing website, and we mixed
these attack sessions with the normal traffic obtained

during the training phase.
The testing phase algorithm is as follows:
1. If the rule for the request is Deterministic Mapping
r ! Q (Q ¼6 ;), we test whether Q is a subset of a
query set of the session. If so, this request is valid,
and we mark the queries in Q. Otherwise, a violation
is detected and considered to be abnormal, and the
session will be marked as suspicious.
2. If the rule is Empty Query Set r ! ;, then the request
is not considered to be abnormal, and we do not mark
any database queries. No intrusion will be reported.
3. For the remaining unmarked database queries, we
check to see if they are in the set NMR. If so, we
mark the query as such.
4. Any untested web request or unmarked database
query is considered to be abnormal. If either exists
within a session, then that session will be marked as
suspicious.
 In our implementation and experimenting
of the static testing website, the mapping model
contained the Deterministic Mappings and Empty
Query Set patterns without the No Matched Request
pattern. This is commonly the case for static
websites.

 V. Performance Evaluation

A prototype of Container Architecture is
implemented using a webserver with a back-end DB.
We also set up two testing websites, one static and
the other dynamic. To evaluate the detection results
for our system, we analyzed four classes of attacks,
as discussed [10], and measured the false positive
rate for each of the two websites.

A. Implementation

We chose to assign each user session into a
different container; however, this was a design
decision. For instance, we can assign a new container
per each new IP address of the client. In our
implementation, containers were recycled based on

events or when sessions time out. We were able to
use the same session tracking mechanisms as
implemented by the Apache server (cookies,
mod_usertrack, etc.) because lightweight
virtualization containers do not impose high memory
and storage overhead. Thus, we could maintain a
large number of parallel-running Apache instances
similar to the Apache threads that the server would
maintain in the scenario without containers [9].

 We evaluated the overhead of our container-
based server against a vanilla webserver. In order to
measure throughput and response time, we used two
webserver benchmark tools: http_load and
autobench. The testing website was the dynamic blog
website, and both vanilla webserver and the
container-based webserver connected to the same
Mysql database server on the host machine. For the
container-based server, we maintained a pool of 160
webserver instances on the machine.

B. Attack Detection

 For the testing phase, we used the attack tools to
manually launch attacks against the testing website,
and we mixed these attack sessions with the normal
traffic obtained during the training phase. We used
the sqlmap which is an automatic tool that can
generate SQL injection attacks. Nikto, a webserver
scanner tool that performs comprehensive tests, and
Metasploit were used to generate a number of
webserver-aimed http attacks (i.e., a hijack future
session attack). We performed the same attacks on
both DoubleGuard and a classic three-tier
architecture with a network IDS at the webserver side
and a database IDS at the database side. As there is
no popular anomaly-based open source network IDS
available, we used Snort as the network IDS in front
of the webserver, and we used GreenSQL as the
database IDS.

 Furthermore, we performed the same test for
the dynamic blog website. In addition to the real
traffic data that we captured for plotting the ROC
curves, we also generated 1,000 artificial traffic
sessions using Selenium and mixed the attack
sessions together with all of them. As expected, the
models for the dynamic website could also identify
all of the same attack sessions as the static case.

 Our proposed architecture is not designed to
detect attacks that exploit vulnerabilities of the input
validation of HTTP requests. The various possible
attacks that can be detected and prevented in the
multi-tiered environment are listed as below.

Proc. of the Intl. Conf. on Advances in Computer Science and Electronics Engineering — CSEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5461-7 doi:10.3850/ 978-981-07-5461-7_21

103

1) Privilege Escalation Attack

 In Privilege Escalation Attacks, the attacker
visits the website as a normal user aiming to
compromise the webserver process or exploit
vulnerabilities to bypass authentication. At that point,
the attacker issues a set of privileged (e.g., admin-
level) DB queries to retrieve sensitive information.
We log and process both legitimate web requests and
database queries in the session traffic, but there are
no mappings among them. IDSs working at either
end can hardly detect this attack since the traffic they
capture appears to be legitimate. However,
DoubleGuard separates the traffic by sessions. If it is
a user session, then the requests and queries should
all belong to normal users and match structurally.
Using the mapping model that we created during the
training phase, DoubleGuard can capture the
unmatched cases.

2) Hijack Future Session Attack
(Webserver-Aimed Attack)

 Out of the four classes of attacks we discuss
[11], session hijacking is the most common, as there
are many examples that exploit the vulnerabilities of
Apache, IIS, PHP, ASP, and cgi, to name a few. Most
of these attacks manipulate the HTTP requests to take
over the webserver. We first ran Nikto. As shown in
our results, both Snort and Double-Guard detected
the malicious attempts from Nikto. As a second tool,
we used Metasploit loaded with various HTTP-based
exploits. This time, Snort missed most of these attack
attempts, which indicates that Snort rules do not have
such signatures. However, DoubleGuard was able to
detect these attack sessions. Here, we point out that
most of these attacks are unsuccessful, and
DoubleGuard captured these attacks mainly because
of the abnormal HTTP requests.

 Our proposed architecture can generate two
classes of alerts. One class of alerts is generated by
sessions whose traffic does not match the mapping
model with abnormal database queries. The second
class of alerts is triggered by sessions whose traffic
violates the mapping model but only in regard to
abnormal HTTP requests; there is no resulting
database query. Most unsuccessful attacks, including
404 errors with no resulting database query, will
trigger the second type of alerts

3) Injection Attack

 We describe how our approach can detect the
SQL injection attacks. To illustrate with an example,

we wrote a simple PHP login page that was
vulnerable to SQL injection attack. As we used a
legitimate username and password to successfully log
in, we could include the HTTP request.

 The HTTP request is obtained from the SQL
injection attacker. The parameter shown in the box is
the injected content. After normalizing all of the
values in this HTTP request, we had the same HTTP
request. However, the database queries we received
do not match the deterministic mapping we obtained
during our training phase.

 SQL injection attacks can be mitigated by input
validation. However, SQL injection can still be
successful because attackers usually exploit the
vulnerability of incorrect input validation
implementation, often caused by inexperienced or
careless programmers or imprecise input model
definitions.

4) Direct DB Attack

 If any attacker launches this type of attack, it
will easily be identified by our approach. First of all,
according to our mapping model, DB queries will not
have any matching web requests during this type of
attack. On the other hand, as this traffic will not go
through any containers, it will be captured as it
appears to differ from the legitimate traffic that goes
through the containers. In our experiments, we
generated queries and sent them to the databases
without using the webserver containers.
DoubleGuard readily captured these queries. Snort
and GreenSQL did not report alerts for this attack.

 Our proposed architecture offers the capability
of normalizing the parameters so that the user can
choose which values to normalize. For example, one
can choose not to normalize the value “admin” in

“user ¼ „admin‟.” Likewise, one can choose to

normalize it if the administrative queries are
structurally different from the normal-user queries,
which is common case. Addition-ally, if the database
can authenticate admin and non admin users, then
privilege escalation attacks by changing values are
not feasible. In addition, users with non admin
permissions can cause minimal (and sometimes zero)
damage to the rest of the system and therefore they
have limited incentives to launch such attacks. When
we deployed our prototype on a system that
employed Apache webserver, a blog application, and
a MySQL back end, Container architecture was able
to identify a wide range of attacks with minimal false
positives.

Proc. of the Intl. Conf. on Advances in Computer Science and Electronics Engineering — CSEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5461-7 doi:10.3850/ 978-981-07-5461-7_21

104

 VI. Conclusion

 A container based intrusion detection system that
builds models of normal behavior for multi-tiered
web applications from both front-end web (HTTP)
requests and back-end database (SQL) queries was
proposed. Unlike previous approaches that correlated
or summarized alerts generated by independent IDSs,
DoubleGuard forms container-based IDS with
multiple input streams to produce alerts. We achieved
this by isolating the flow of information from each
webserver session with a lightweight virtualization.
Furthermore, we quantified the detection accuracy of
our approach when we attempted to model static and
dynamic web requests with the back-end file system
and database queries. For static websites, we built a
well-correlated model, for detecting different types of
attacks.

 Acknowledgment

 The authors would like to thank the anonymous
reviewers for their valuable comments and
suggestions, which have greatly improved the quality
of the paper.

 References

 [1] S. Kumar, "Classification and detection of computer
intrusions", Ph.D. thesis, Purdue Univ., West Lafayette, IN, 1995.
[2] W. Lee and D. Xiang "Information-theoretic measures for
anomaly detection", In Proc. of the 2001 IEEE Symp. on Security
and Privacy, Oakland, CA, May, 2001, pp. 130-143.
[3] C. Anley, “Advanced Sql Injection in Sql Server Applica-
tions,” technical report, Next Generation Security Software, Ltd.,

2002.
[4] K. Bai, H. Wang, and P. Liu, “Towards Database Firewalls,”
Proc. Ann. IFIP WG 11.3 Working Conf. Data and Applications
Security (DBSec ‟05), 2005.
[5] B.I.A. Barry and H.A. Chan, “Syntax, and Semantics-Based
Signature Database for Hybrid Intrusion Detection Systems,”
Security and Comm. Networks, vol. 2, no. 6, pp. 457-475, 2009.
[6] D. Bates, A. Barth, and C. Jackson, “Regular Expressions
Considered Harmful in Client-Side XSS Filters,” Proc. 19th Int‟l
Conf. World Wide Web, 2010.
[7] M. Christodorescu and S. Jha, “Static Analysis of Executables
to Detect Malicious Patterns,” Proc. Conf. USENIX Security
Symp.,2003.
[8] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna,
“Swaddler: An Approach for the Anomaly-Based Detection of
State Violations in Web Applications,” Proc. Int‟l Symp. Recent
Advances in Intrusion Detection (RAID ‟07), 2007.
[9] H. Debar, M. Dacier, and A. Wespi, “Towards Taxonomy of
Intrusion-Detection Systems,” Computer Networks, vol. 31, no. 9,
pp. 805-822, 1999.
[10] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna,
“Toward Automated Detection of Logic Vulnerabilities in Web
Applica-tions,” Proc. USENIX Security Symp., 2010.
[11] Y. Hu and B. Panda, “A Data Mining Approach for Database
Intrusion Detection,” Proc. ACM Symp. Applied Computing
(SAC), H. Haddad, A. Omicini, R.L. Wainwright, and L.M.
Liebrock, eds., 2004.

[12] Y. Huang, A. Stavrou, A.K. Ghosh, and S. Jajodia,
“Efficiently Tracking Application Interactions Using Lightweight
Virtualization,” Proc. First ACM Workshop Virtual Machine
Security, 2008.

About Authors:

S.Saravanan received M.E
Computer Science and
Engineering from Anna
University and pursuing Ph.D in
Anna University, Chennai. He
is working as Assistant
Professor in R.M.K College of
Engineering and Technology.
His current research interests

include Mobile Adhoc network, Computer networks
and network security.

M.Ramakrishnan received Ph.D
from Anna University, Chennai.
He is working as professor in
Velammal Engineering College.
He is a member of ISTE, CSI,
IACSIT, IAEME and IEEE. His
current research interests include
computer netwoks and network

security, wireless sensors networks and image
processing.

Baskar.M received M.Tech
Information Technology from
Sathyabama University and
pursuing Ph.D in Anna
University, Chennai. He is
working as Assistant Professor in
R.M.K College of Engineering
and Technology, Chennai. He is a

member of ISTE. His current research interests
include parallel and distributed systems, computer
networks and network security.

Gnanasekaran.T received Ph.D
from Anna University, Chennai.
He is working as professor in
R.M.K. Institutions. He is a
member of IEI, ISTE, IAENG
and ACEEE. His current research
interests include Wireless sensor
networks, WiMAX, Parallel and
distributed Systems, Computer

networks, Mobile Adhoc networks and Broadband
wireless technology.

Proc. of the Intl. Conf. on Advances in Computer Science and Electronics Engineering — CSEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5461-7 doi:10.3850/ 978-981-07-5461-7_21

