

46

Minimization of Test Suite through
Regress Analysis of Requirement Coverage

Dr. Rajat Sheel Jain, Dr. Amit Gupta

Abstract – Requirements are very important
features for the designing of any software
application. Test suite creation is a big and hectic
task for the Software Quality Analyst. We propose
to develop a technique for analysis of Covered
Requirement and its impact on the designed Test
suite. The requirement associated with the test
cases accepts specification like execution time,
costing for minimization of test suite. The
specification analyser compares the information
about the techniques like Precision, Efficiency,
Inclusiveness and Generality. By reducing the test
suite size, we can reduce the execution cost and
time, validation and management of the test cases
from the suite for future releases of the software
and able to maintain the fault detection capability
by reusing the refined test cases. The requirement
coverage will increase time-effectiveness in sorting
the features of the application and reduces the
duplicacy. An improved rate of testing activity will
provide faster feedback of the system under test.

Keywords: Requirement Coverage, Retesting &
Regression Testing, Data Flow Technique and
Suite Refinement.

Dr. Rajat Sheel Jain
Department of Information Technology, Institute of Management Studies,
Noida, India
 jainrajatsheel@gmail.com

Dr. Amit Gupta
Maharaja Agrasen Institute of Management Studies, New Delhi, India
amitgupta21@gmail.com

I. INTRODUCTION

Software Quality Testing is a part of verification
and validation. The software quality assurance is
essential for organisations. The main objective is to
reduce the cost of guarantying quality throughout
the software development process.
Software Testing is the activity that individual does
with the intention to find out the errors in software
applications. Regression Testing is the process of
validating modified software to detect whether the
new errors have been introduced into the previously
tested codes and provide confidence that the
modifications are correct.
Since the regression testing is an expensive process,
researches have proposed regression test selection
techniques as a way to reduce some of this
experience. These techniques attempt to reduce the
costs by selecting and running subsets of the test
cases in the program’s existing test suites .however

it is difficult to compare and evaluate these
techniques because they can be used to solve the
different problem goals.

All code-based regression test selection techniques
attempt to select a subset T’ of T that will be

helpful in establishing confidence that P’ was

modified correctly and that P’s functionality has

been preserved where required. In this sense, all
code-based test selection techniques are concerned,
among other things, with locating tests in T that
expose faults in P’. Thus, it is appropriate to

evaluate the relative abilities of the techniques to
choose tests from T that detect faults.

Proc. of the Intl. Conf. on Advances in Computer Science and Electronics Engineering — CSEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5461-7 doi: 10.3850/978-981-07-5461-7_10

mailto:jainrajatsheel@gmail.com

47

II. VARIOUS SELECTION TECHNIQUES FOR
REGRESSION TESTING

There are so many regression test selection
techniques: Path Analysis Technique, Data flow
Techniques, Requirement Coverage.

A. Requirement Coverage

The Software Application designed on the
requirement gathering. The requirements gathering
technique operate as minimization techniques, they
return small test suites and thus reduce the time
required to run the selected tests. The test suite can
be reduced until and unless it can get associated
with the requirements. However, due to the
calculations required to solve systems, it can be
found that the same requirements can be associated
with more than one test case. As soon as the
requirement can be associated with the test cases,
the status of the requirement will get updated from
“NOT COVERED” to “NO RUN”. Despite this

possible worst-case behaviour is that the same
requirement will get associated with number of
existing test cases in the test suite that can obtain
solutions, in practice, in times that may be
acceptable.

A selective requirement coverage retest technique
that uses systems under test to select test suites that
yield segment coverage of modified code.
Requirement coverage techniques use systems to
express relationships between tests and program
segments. The technique obtain requirements from
matrices that track program segments reached by
test cases, segments reachable from other segments,
and (optionally) definition-use information about
the segments.

B. Data Flow Technique
Several selective retest techniques are based on
dataflow analysis and testing techniques. Dataflow
test selection techniques identify definition-use
pairs that are new in, or modified for, P’, and select

tests that exercise these pairs. Some techniques also
identify and select tests for definition use pairs that
have been deleted from P. Two overall approaches
have been suggested. Incremental techniques
process a single change, select tests for that change,

incrementally update dataflow information and test
trace information, and then repeat the process for
the next change. Non-incremental techniques
process a multiply-changed program considering all
modifications simultaneously.

III. SYSTEM ARCHITECTURE

Fig. 1 System Architecture

The above framework will be used for the finding
of the fault detection capability of the test suite.
There will be the source program through which we
can take the input and give it to the test suite.
The test suite that contains the numbers of the test
cases specifies that which test cases will cover more
number of the program criteria.
The sizes of the test suite minimizes without
reducing their fault detection capability of the test
cases in the suite.

The framework analyses the test cases on the basis
of the four properties i.e. Inclusiveness, Precision,
Generality and Efficiency. Inclusiveness measures
the extent to which a technique chooses tests that
will cause the modified program to produce
different output than the original program, and
thereby expose faults caused by modifications.
Precision measures the ability of a technique to
avoid choosing tests that will not cause the

Proc. of the Intl. Conf. on Advances in Computer Science and Electronics Engineering — CSEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5461-7 doi: 10.3850/978-981-07-5461-7_10

48

modified program to produce different output than
the original program. Efficiency measures the
computational cost, and thus, practicality, of a
technique. Generality measures the ability of a
technique to handle realistic and diverse language
constructs, arbitrarily complex code modifications,
and realistic testing applications. These categories
form a framework for evaluation of the test cases
that should be analysed through our specification
analyser and compare them.

IV. PROPOSED REQIREMENT COVERAGE PARSER
In this paper we proposed to implement the
Coverage algorithm which selects the test cases
from T whose outputs may be affected by the
modifications made to the programs.The algorithm
exploits the following observations:
1. Not all statements in the program are executed
under all test cases.
2. If a statement is not executed under a test case, it
cannot affect the program output for that test case.
3. If a statement is executed under a test case, it
does not necessarily affect the program output for
that test case
4. Every statement does not affect every part of the
program output.
The requirement coverage analyser will work as a
parser and to track test cases from the test suite pass
to the analyser where these cases will be observed
in terms of the statement coverage and costs-
benefits.
Using this algorithm to parse which decomposes the
program and selects test cases to ensure that there is
no linkage between the modified and unmodified
code.

V. RESULTS AND DISCUSSIONS
By using above discussed strategies and models we
found some good results for requirement coverage
and their association with the designed test suite.
Some results of our work are displayed here:

Fig 2: Designing of Requirements

Fig 3: Designing of Test Cases

Fig 4: Requirement Coverage with Test Cases

The requirement coverage may refine those test
cases that are associated with the designed
requirements and perform maximum statement
coverage with the minimum cost. The cost could be
found on the basis of the fact that, suppose that
there are hundreds of test cases in a test pool and
out of which only 30% test cases are found that
satisfy the criteria for the statement coverage and
their fault detection capability or efficiency cannot
be effected due to the any modifications made to
the program.

Proc. of the Intl. Conf. on Advances in Computer Science and Electronics Engineering — CSEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5461-7 doi: 10.3850/978-981-07-5461-7_10

49

The main benefit of requirement coverage is to
evaluate that every test case from the test suite will
get associated with the designed requirement and
compare them with the manual test cases that can
be directly given to the test pool. Now we will be
able to evaluate that which test cases are more
efficient, either manual test cases or those that
would be analysed by the requirement coverage
analyser satisfying different properties.
This will help in reducing test suite sizes by
refining them but the minimization cannot
compromise the fault detection parameters in
effectiveness of the coverage requirements.

VI. CONCLUSION AND FUTURE WORK
This paper find out that the framework is used to
identify the strengths and the weaknesses of those
test cases that cannot help for the minimization of
the test pool and may affect their fault detection
capability. With this approach, we have to
analytically evaluate the requirement coverage
associated with test suite and efficiency in terms of
cost and time for that test suite.
Our evaluation indicates that requirement that will
be associated with the test cases will be much more
effective for finding the faults which can be
compared and understood if our framework is used
for the industrial purposes. Once the framework is
to be applied it is used to demonstrate that for a
given test pool how many test cases are efficient for
the finding of the statement coverage and how
much cost is to be obtained for these test cases.

ACKNOWLEDGEMENT

The author express his sincere gratefulness to Mr.
Rajeev Kumar Gupta, The President, Institute of
Management Studies, Noida, India for his
encouragement and support throughout the work of
this wish and also for facilitating technical and
literature facilities, required in the development of
this work. One of the authors (Rajat Sheel Jain)
expresses his thanks to Mr. Alok Agrawal, Advisor,
Institute of Management Studies, Noida, India for
his valuable suggestions and encouragement.

REFERENCES

[1] G. Rothermel and M. Harold. Analyzing
regression test selection techniques. IEEE Trans.
On Softw. Eng., 22(8):537-561, Aug. 2006.

[2] W. E. Wong, J. R. Horgan, A. P. Mathur, and A.
Pasquini. Test set size minimization and fault
detection effectiveness: A case study in a space
application. In Proc. of the 21st Annual Int'l. Comp.
Softw. & Appl. Conf., pages 522-528, Aug. 1997.
[3]. Agrawal, H., Horgan, J.R., Krauser, E.W., and
London, S.A. Incremental regression testing. In
Proceedings of the IEEE Software Maintenance
Conference (1993), pp. 348–357.

[4]. Rothermel, G. and Harrold, M.J. A Comparison
of Regression Test Selection Techniques. Tech.
Rep., Department of Computer Science, Clemson
University, Clemson, SC, Oct. 1994.

[5] J.-M. Kim, A. Porter, and G. Rothermel. An
empirical study of regression test application
frequency. In Proc. of the 22nd Int'l. Conf. on
Softw. Eng., June 2000.

[6] D. Rosenblum and G. Rothermel. A
comparative study of regression test selection
techniques. In Proc. of the 2nd Int'l. Workshop on
Empir. Studies of Softw. Maint., Oct. 1997.

[7]. Rothermel, G. and Harrold, M.J. A safe,
efficient algorithm for regression test selection. In
Proceedings of the IEEE Software Maintenance
Conference (1993), pp. 358–367.

[8] W.E. Wong, J.R.Horgan, S.London, and
A.P.Mathur ,”Effect of the Test Set Minimization

on Fault Detection Effectiveness,”Proc.17
th Int’l

Conf.Software Eng., pp.41-50, Apr.1995.

Proc. of the Intl. Conf. on Advances in Computer Science and Electronics Engineering — CSEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5461-7 doi: 10.3850/978-981-07-5461-7_10

