

Survey on Software Test Design Metrics

Raj Kumari and Jaspreet Kaur

Abstract— Measurement has always been an integral part of

software engineering. Software projects can be assessed and

risks reduced by using software metrics. In this paper we

discuss software test metrics and their impact on software

testing. This paper focuses on software test design metrics its

key role in software testing process along with classification and

analysis of various test metrics.

Index Terms—Software testing,Sofware metrics,software test

design metrics.

I. INTRODUCTION

Computer software is an important element in growth of
social-economic development which requires new techniques
and strategies.Software application„s demand for quality has
grown.Hence testing becomes one of the indispensable
components of software development which is the indicator of
quality [1].
―Testing is questioning a product in order to evaluate it”.

------James Bach [2]
Software testing is a crucial element in the SDLC and can
deliver excellent results if executed accurately and efficiently
[3] and software measurement can play a key role in
increasing the effectiveness of testing process. Software
metrics are used to evaluate the software development process
and the quality of the resultant product [4].
This paper investigates metrics from the view point of unit
test case designing. In this our units consist of the classes, the
smallest testable unit. The approach used is to evaluate a set
of metrics and predict the testing effort of those metrics.The
basic reason for choosing this approach was that software
metrics can efficiently investigate various aspects of
software.For better results an operation has to be tested as
part of class not in isolation. Thus we consider the unit
testability with respect to various test design metrics [5].

II. SOFTWARE TEST DESIGN METRICS

Software Metric is generally used to describe a dimension of a
particular attribute of a software project. The Software
Metrics that the QA team produces are concerned with the
test activities that are part of the Test Phase and so are
formally known as software test metrics. Figure1 shows
various test measures and resulting test metrics.

Raj Kumari is with the University Institute of Engineering and
Technology,PanjabUniversity,Chandigarh,India
(email:rajkumari_bhatia5@yahoo.com).
Jaspreet kaur is student at University Institute of Engineering and
Technology,PanjabUniversity,Chandigarh,India
(email:jsprtkaur15@gmail.com)

Software metrics can be broadly classified into two types
software product metrics and software process metrics. Figure
2[17] shows the categories of software testing metrics
hierarchy.

TEST MEASURES & METRICS

Measure Metrics

Test Progress Tracking testing progress
 Tracking testing defect

backlog
 Staff productivity

Test Quality Test process efficiency
 Test productivity

Cost of testing Direct cost
 Indirect cost

Test effectiveness Residual Defect Density
 Defect Distribution(severity)
 Defect Rejection

Figure 1

Test process metrics provide information about preparation
for testing, test execution and test progress. They are mainly
used in measuring progress of the Test Phase but don„t
provide any information regarding the test state. Process
metrics describe the effectiveness, quality and efficiency of
the processes that produce the software product. For example,
effort required in the process, total time taken to produce the
product, defect removal efficiency throughout development,
no. of defects found at some stage in testing, no. of defects
removed maturity of the process [6]. Some Test process
metrics are:
(i.) Number of test cases designed.
(ii.) Number of test cases executed.
(iii.) % of test cases executed.
(iv.) % of test cases passed.
(v.) % of test cases failed.
(vi.) Average execution time of a test case.

Test product metrics present information about the test state as
well as testing status of a software product and are
generated by test execution and code fixes or deferment.
Using these metrics we can measure the products test state
and indicate the quality level, valuable for product release
decisions. Product metrics help in describing the
characteristics of the product such as size, complexity, design
features, scalability, efficiency, reliability, portability and
most importantly testability [7].
Some Test product metrics are:

Proc. of the Intl. Conf. on Advances in Computer Science and Electronics Engineering — CSEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5461-7 doi:10.3850/ 978-981-07-5461-7_04

13

(i.) Estimated time for testing.
(ii.) Actual testing time.
(iii.) Average time interval between failures.
(iv.) Average number of failures experienced in time
intervals.
(v.) Time remaining to complete the testing.

Software Metrics

Software Test
Metrics

Test Process Test Product
Metrics Metrics

Figure 2

III. CHARACTERISTICS OF USABLE METRICS

Metrics should not be collected because they are prescribed in the
literature or because they are recognized as popular in some
companies, but because they are helpful in taking decisions on a
project in particular or within a given organization [8]. A useful
metric is precisely defined (i.e., measurable or quantifiable), It
also helps indicate whether an organization is achieving software
goals [9]. There are several fundamental characteristics associated
with useful software metrics. The useful software metrics should
be:

 Simple and easy to understand.
 Measurable
 Economical.
 Metrics must be timely.
 Robust.
 Reliable
 Valid.
 Consistent and used over time.
 Unobtrusively collected.
 Independent.
 Accountable.
 Precise.

Useful metrics must be accompanied by data that is correct
(correct according to the rules of the definition of the metric),
accurate, exact and consistent (no large difference in the value
occur, even if the person or measuring device changes). The
measurement process should be clearly described clearly enough
for someone else to be able to repeat the measurement Units[17].

IV. EVALUATION OF TEST DESIGN METRICS

This evaluation is aimed at determining the role of test design
metrics in predicting the effort required to implement the
design and the quality of the code produced that is to
determine total testing effort required to test based upon
various metrics.
A typical empirical validation of test design object-oriented
metrics is done by investigating the relationship between each
metric and the outcome of interest. The results for different
metrics are studied. The metrics RFC, CBO, and LCOM were
defined in [10] and the NMA metric was defined in [11].
They have revealed that size can have an important
perplexing result on the validity of object-oriented metrics
[12].
The evaluation of test metrics is the core topic of this
research. In this research we have defined our set of metrics,
and set up the experiments to evaluate them. Software
engineering rarely involves empirical analysis.
First, we state the objective of our experiments:
Objective: To assess the capability of the proposed source-
based metrics (CBO,RFC,NOC,NOA and DITC) in
predicting the testing effort.
Point of view: We are assessing that whether or not the
degree of testing effort required for the class values can be
predicted on the basis of the above mentioned source based
metrics [5].

V. TESTABILITY

IEEE defines testability as ―the degree to which a system or
component facilitates the establishment of test criteria and
performance of tests to determine whether those criteria have
been met―[13]. In the unit testing of object oriented system,
the testing for classes brings in some issues one of which is
that a class cannot be tested directly, only an instance of it
can be tested and the second one is that when an object is
considered in an object oriented system, the state related with
that object also influences the path of execution and methods
of a class can communicate among themselves through this
state. Thus we took into consideration the unit testability of
the object oriented system with respect to the test case design
for unit testing [5].
Encapsulation of attributes and operations make testing
difficult as for testing the solid and abstract state of object is -
required. No-doubt code reuse has been achieved through the
use of inheritance but it poses further usage requirement on
retesting[14], so does multiple inheritance in which further
the testing is further complicated by increasing the number of
contexts for which testing is required. How the test cases are
applied within super class and subclass also needs to be
considered with care [5],[14],[15].
The realm of object orientation lays emphasis on the
encapsulation of information and implementation of
operations performed on the information. Coupling provides
us an evaluation of strength of association established by a
connection between object classes to which a class is coupled.
It is measured by calculating the number of distinct non

Proc. of the Intl. Conf. on Advances in Computer Science and Electronics Engineering — CSEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5461-7 doi:10.3850/ 978-981-07-5461-7_04

14

inheritance related class hierarchies on which a class
depends[5],[10],[14],[15].The larger the number of couples
the higher will be the sensitivity to change and errors in other
parts of design and make testing difficult. This would
increase the testing effort (TE) and decrease the testability.
Therefore, we say that testability is inversely proportional to
CBO.

TE ∞ CBO

ITb ∞ 1/CBO (1)

Estimating the total CBO (TCBO) over all classes (i=1 to n),
the sum is divided by two because the same relationship will
be counted twice, when the two coupled classes are
considered independently. Therefore we have:

1 n
TCBO = ------ X Σ CBO (2)

2 i=1

Now, if we consider the combination of the complexity of a
class through the number of methods and the amount of
communication with other classes. It was found that the
complexity of the class increases with number of methods that
can be invoked from a class through messages. Larger
number of methods that can be invoked in response to a
message, the more complicated the testing is, which in turn
decreases the testability.
Using the metric, response for a class (RFC) which is defined
as the number of methods in response set [5],[10],[14],[15],
we say that the testing effort (TE) is directly proportional to
RFC and hence testability is inversely proportional to it.

TE ∞ RFC

ITb ∞ 1/RFC (3)

Estimating total RFC (TRFC) over all classes (i=1 to n) we
get:

n
TRFC = Σ RFC (4)

i=1
Since a class is a set of objects that have common properties
(i.e methods and instance variables), an abstraction of the
application domain is prepared/developed by arranging
classes in a hierarchy which is formed due to inheritance
between classes.This leads to super class accumulating all or
desired common features of the subclass.

A class is composed of attributes and methods. In this proposal
the Depth of Inheritance Tree of a Class (DITC) metric for class
inheritance hierarchy is measured in terms of sum of the attributes
(Private, Protected, public and inherited) and Methods (Private,
Protected, public and inherited) at each level. The DITC metric of a
class is calculated as:

L

DITC (C)= ΣLEV (i)*i

i=1

Where,

LEVi = Attribute (Ci) + Method (Ci)

Ci = A class in the ith level of class inheritance
hierarchy.
Attribute (Ci) = Count the total number of protected, private,
public and inherited attributes within a class in the class
inheritance hierarchy at each level.
Method (Ci) = Count the total number of protected, private, public
and inherited methods within a class in the class inheritance
hierarchy at each level.
L = Total height in the class inheritance hierarchy i.e. the
maximum distance from the last node (last level in the class
inheritance hierarchy) to the root node (first level in the class
inheritance hierarchy), ignoring any shorter paths in case of
multiple inheritance is used. The metric depth of the
inheritance that measure the depth of the class within the
inheritance hierarchy is defined as ―the maximum distance
from the node to the root of the tree‖ [10],[14].

It shows that the deeper a class is within the hierarchy, the
more the number of methods it is will inherit. Thus making it
more complex to predict its behavior. Deeper trees involved
more methods and classes increasing the design complexity.
This increases the testing effort and decrease the testability.
This leads to testability being inversely proportional to DITC
[16].

TE ∞ DITC

ITb ∞ 1/DITC (5)

Estimating total DITC (TDITC) over all classes (i=1 to n), we
get:

n
TDITC = Σ DITC (6)

i=1

Chidamber and Kemerer proposed the Number Of Children of a
class as the NOC metric for the class, which is the number of
immediate subclasses subordinate to a class in the class hierarchy
[10]. NOC is a measure that the methods of parent class are to be
inherited by how many sublasses, the greater the value the greater
will be the potential for reus. The greater the number of children
of a class, the greater is the probability of improper abstraction of
that class. NOC gives an approximate idea of the potential
influence a class has on the overall design. It is given as the
Number of descendents of the class. As number of
descendents increase, the Effort of testing (TE) of methods of
that class increases. This Decreases the testability providing
an inverse relationship:

Proc. of the Intl. Conf. on Advances in Computer Science and Electronics Engineering — CSEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5461-7 doi:10.3850/ 978-981-07-5461-7_04

15

values(CBO,RFC,DITC,NOC,NOA) are defined above.

By equations (2,4,6,8,10) the total interface testability (TITb)

TE ∞ NOC

ITb ∞ 1/NOC (7)

Estimating total NOC (TNOC) over all classes (i=1 to n),
We get :

n
TNOC = Σ NOC (8)

i=1

The Number Of Attributes [18] metric is used to calculate the
average number of attributes a class contains in the
model. This is useful in identifying the following probable
problems:

(a) A class with numerous attributes may signify the
existence of coincidental cohesion and necessitate
additional decomposition, to handle the complexity
of the model.

(b) In case of no attributes serious consideration
should be given to the semantics of the class. This
may possibly be a class utility rather than a class.

Considering a class, this is a simple count of the number of
attributes.If the number of attributes are high (> 10) it is an
indication of poor design, particularly insufficient
decomposition, specially if this is coupled with an equally
high number of methods. Classes without any attributes are
particular cases and are not essentially anomalies. For
example these can be interface classes, and must be
checked.[17] Therefore as the NOA increases the effort of
testing (TE) of methods associated with those attributes
increases. Thereby decreasing the testability:

TE ∞ NOA

ITb ∞ 1/NOA (9)

Estimating total NOA (TNOA) over all classes (i=1 to n),
we get :

n
TNOA = Σ NOA (10)

i=1

Equations (1,3,5,7,9) we get the testability with
respect to a class :

ITb ∞ (1/CBO) x (1/RFC) x (1/DITC)x (1/NOC)x(1/NOA)
 (11)

k
ITb = -- (12)

(CBO x RFCxDITCxNOCxNOA)

Here ‗k„ is the proportionality constant and the other

of the object oriented software over all classes (i=1 to n) can
be given as

k

TITb = --- (13)
(TCBOxTRFCxTDITCxTNOCxTNOA)

The value of ‗k„ will depend on characteristics related to
software processes and experience of developer, type of tool
available for the development of the unit as we are dealing
with unit testing. The value will have to be worked out by
specific software teams of concerned organization.

VI. CONCLUSION

These test design metrics explore the test case design and its
testability. The results have shown us that the test design
metrics are useful in measuring testability and the effort of
testing. Particularly, the results allow for explanations of the
CBO, RFC, DITC, NOC and NOA metrics in terms of test
case construction factors. To wind up the results will help us
to advance the set of metrics and the development approach
so that we can increase testability and reduce the testing
effort.

REFERENCES

[1] John A. Fodeh and Niels B. Svendsen, Release Metrics : When to stop
 Testing with a clear conscience, Journal of Software Testing Professionals,

 March 2002.
[2] http://www.testrepublic.com/forum/topics/1178155:Topic:33849

[3] Quadri, S. M. K and Farooq, SU, “Software Testing - Goals,

Principles, and Limitations”, International Journal of Computer Applications
(0975 – 8887) Volume 6- No.9, September 2010

[4] Stark, George E; Durst, Robert C; and Pelnik, Tammy M. ―An Evaluation of
 Software Testing metrics for NASA„s Mission Control Center‖ 1992.
[5] Divya Prakash Shrivastava and R.C. Jain, ―Metrics for Test Case Design
 in Test Drive Development‖, International Journal of Computer Theory

and Engineering(1793-8201), Vol.2, No.6, December, 2010
[6] Ogasawara, Hideto, Yamada, Atsushi and Kojo, Michiko, ―Experiences of
 software Quality Management Using Metrics through Lifecycle‖,

Proceedings of ICSE-18, 1996.
[7] Kan, Stephen H, ―Metrics and Models In Software Quality Engineering‖,
 PEARSON, 2003.
[8] Futrell, Robert T.: Futrell ,Donald F. And Shafer, Linda I., ―Quality

Software Project Management‖, PEARSON
[9] Torn, Aimo: Professor, Department of Computer Science Abo, Akademi
 University; Faculty member Turku Centre for Computer Science (TUCS)

Turku, Finland.
[10] S. Chidamber and C. Kemerer: A Metrics Suite for Object-Oriented
 Design, In IEEE Transactions on Software Engineering, 20(6):476-493,

1994.
[11] M. Lorenz and J. Kidd: Object-Oriented Software Metrics. PrenticeHall,
 1994
[12] Saida Benlarbi, Khaled El Emam, Nishith Goel. Issues in Validating
 Object-Oriented Metrics for Early Risk Prediction, Accessed on April

2008.
[13] IEEE Standard Glossary of Software Engineering

 TechnologyANSI/IEEE Standard, Washington, DC, USA,2000.
[14] R.S. Pressman, Software Engineering: A Practitioner„s Approach,
 McGraw-Hill, 1997.

Proc. of the Intl. Conf. on Advances in Computer Science and Electronics Engineering — CSEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5461-7 doi:10.3850/ 978-981-07-5461-7_04

16

http://support.objecteering.com/objecteering6.1/help/us/metrics/metrics_in_detail/number_of_methods.htm
http://www.testrepublic.com/forum/topics/1178155:Topic:33849

[15] P. Jalote, An Integral Approach to Software Engineering‖, Spring
 Verlog, 1997.
[16] Kumar Rajnish, Vandana Bhattacherjee,‖ Class Inheritance Metrics-An
 Analytical and Empirical Approach‖ September 13, 2007.

[17] Sheikh Umar Farooq, S. M. K. Quadri, Nesar Ahmad,
 “ Software Measurements and Metrics: Role in Effective Software Testing.”

 International Journal of Engineering Science and Technology (IJEST) 3.1
 (2011): 671-680.

 [18] Support.objecteering.com/help/us/metrics/metrics_in_detail/
 number_of_attributes

17

Proc. of the Intl. Conf. on Advances in Computer Science and Electronics Engineering — CSEE 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-5461-7 doi:10.3850/ 978-981-07-5461-7_04

