

383

Cracking MD5 hashes by simultaneous usage of
Multiple GPUs and CPUs over multiple machines in a

network
Jega Anish Dev

Abstract—Cryptographic Hash functions find ubiquitous use

in various applications like digital signatures, message
authentication codes and other forms of security. Their
associated vulnerabilities therefore make them a prevalent target
for cyber criminals. General means of defeating hash based
authentication involves both discovering and exploiting inherent
weakness in cryptographic hash functions or by straight forward
brute force attack on the hash Digest. The latter in most cases
presents to be an extremely time intensive task. Recent times
have however seen usage of GPUs for brute forcing hashes thus
significantly accelerating the rate of brute forced hashes. This has
further been extended to use simultaneous usage of multiple
GPUs over multiple machines. Usage of CPUs for brute forcing
have more or less lost importance over the advent of GPU based
cracking. This paper presents an efficient method of maximally
using computing resources by simultaneously using Graphics
Processing Units (GPUs) and Central Processing Units (CPUs) of
machines over a network and compares its efficiency against
using networked GPUs alone. This also discusses the possibility of
currently unseen exploitation of computing power of botnets.

Keywords— MD5 Hash cracking, CUDA based cracking,
combined usage of CPU and GPU for hash cracking, Botnet
computing power

I. Introduction
Cryptographic hash functions find its uses in most of the

security related fields involved in day to day life. They are
designed to take a string of any length as input and produce a
fixed-length hash value called the Digest. Digital finger
printing, verifying authentication of messages/data and
password verification are some of the most common uses of
the cryptographic hashes. The three main requirements of a
hash function are Pre-image resistance, Second pre-image
resistance and Collision resistance. These features prevent a
malicious adversary from being able to replace or modify the
input data without changing its Digest. Exploit based attacks
involve defeating one or more of the 3 resistance features of
the algorithm. These exploits are considered to be the greatest
vulnerabilities of a hashing algorithm as opposed to brute
forcing which almost completely depended on the power of
machines used. Brute forcing involves generating a look up
table on the fly consisting of all possible strings, referred to as
Messages, and their hashed equivalents. The hash required to

Jega Anish Dev

Department of Computer Science and Engineering,
College of Engineering, Guindy. Anna University
India
Anishdjd@yahoo.com

be broken is compared with the hashes generated on the fly. A
generated hash found equal to the hash to be cracked indicates
discovery of the Message. Usage of CPUs alone was
considered to be largely inefficient as this would yield not
more than a dozen million hashes per second. CUDA
technology granted access to hundreds of cores within the
GPU and enabled generation of approximately 300 to 400
million hashes per second. This figure grew manifold with the
GPUs being used in parallel across a network. Modern day
high performance desktop GPUs can generate around a billion
hashes a second.

This paper aims at harnessing the combined power of
modern multi core CPUs along with GPUs over multiple
computers in a network. This also aims to present a
decentralized solution to integrating multiple computers to
work on concurrently breaking a hash. This is demonstrated in
breaking an MD5 hash Digest. The proposed concept can be
divided into 2 modules:

1. Platform Frontend
2. Brute Forcer Backend

The rest of the paper is organized as- Section II discusses
the current standards in GPU based hash password cracking.
Section III describes the proposed methodology. Section IV
analyses the performance results obtained and discusses its
scalability. Section V concludes the paper with future work
and also discusses possible malicious uses of large scale
distributed CPU and GPU computing power.

II. Literature Survey
From the references [1] to [6], I arrived at various methods

of using CUDA to brute force hash Digests both by single and
multiple GPUs. This also showed a number of ways to
distribute the cracking Job amongst the nodes involved in
cracking the hash Digest

David Apostal et al 2012, [1] suggested an HPC (high
performance computing framework), MPI (message passing
interface) to minimize the amount of latency and handle
communication between multiple GPUs. This allows for a
course-grained division of the Job using MPI where each
device applies a fine-grained division of the problem using
CUDA to perform the actual calculations to brute forcing
hashes. The paper also specifies 3 dictionary based password
recovery algorithms.

Tomosuke Murakami et al, 2010, [2] describe performance
of GPGPU (general purpose computing on graphics
processing unit) to parallelize cryptographical hash processing

Proc. of the Second Intl. Conf. on Advances in Electronics, Electrical and Computer Engineering -- EEC 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6935-2 doi:10.3850/ 978-981-07-6935-2_78

http://en.wikipedia.org/wiki/String_%28computer_science%29
http://en.wikipedia.org/wiki/Collision_resistance

384

of a password cracking tool, John the Ripper. The paper
describes parallelizing the 3 modes supported by John The
ripper, “Singe mode”, “Word list mode” and “incremental
mode”. The paper specifically exemplifies cracking MD5
hashes

Anh-Duy Vu et al, 2011, [3] described a homogeneous
parallel brute force cracking algorithm that performs all the
works on the GPU side.

BarsWF, (3.14.by/en/md5), [4] is currently the most
efficient and fastest MD5 hash brute forcer by
Svarichevsky Mikhail. It utilizes both the CPU and GPU in a
machine to brute force a hash Digest. A modified version of
this is used as the Brute Forcer Backend module.

Feng Wang et al, 2012, [5] explore constant memory in
CUDA architecture and achieve 44.6% improvement by
allocating constant memory to a padding array. It presents a
highly scalable implementation of Brute Force Attack
Algorithm of MD5 Crypt on Tianhe-1A.

Duc H. Nguyen et al, [6] discuss an approach using a
cluster of modern multi-core graphic processing units (GPU
Cluster) as computing devices for recovering lost passwords of
MD5. The paper also discusses the rate of increase of hashes
generated per second with addition of more GPU devices.

Adrew D. Zonenberg, [7] discusses distributed hash
cracking system capable of running on all major platforms,
using nVidia GPU acceleration where available. The cracker is
modular and allows precompiled hash algorithms to be added
with no modification to the existing application binaries, in
order to add support for new algorithms or make use of
hardware acceleration.

 [8] States the number of computers constituting the largest
botnets ever recorded.

[9] States the number of computers in an average botnet.
This data is used to theorize the potential average computing
power provided by a botnet.

III. Proposed Work
This section presents the methodology proposed to setup a

decentralized network of computer nodes whose combined
computing powers of both CPUs and GPUs can be used for
cracking a hash. From hence forth, all references to cracking a
hash are implied to use both the CPU and GPU. All references
to cracking a hash Digest by splitting up the work among
several computers are called Jobs. A Job pool is referred to as
the total number of hashes required to be tested before the
hash Digest has been cracked.

A. Platform Frontend
 The main aim of this platform is to provide a stable

platform on which the combined computing powers of all
participating machines can be pooled together and be made
ready for simultaneous use. The outcome of this module is
essentially a single program that can act at as both a client and
a server in a network of available machines. It is deployed on

machines that are required to be added to the computing pool.
It can work as a client when a Job is initiated by another node.
In this case, the program receives the hash Digest, the
Minimum Key Length, Character Set used and its quota of the
Job pool and then begins brute forcing the Digest according to
the quota received. If the program works as a server, it first
receives from the user: the hash Digest to be cracked, the
minimum key length for the brute Forcer to start working on
and the character set used in the brute force. It then distributes
the Job pool among the available machines and also to itself.
This system ensures the availability of nodes that are on the
network and ranks them based on their processing power
taking into consideration the combined strengths of their
GPUs and CPUs. It splits the Job in such a way that the
machines with greater computing power receive larger Job
pools as compared to the machines of intermediate power. The
ranking of a node is based on the total number of hashes it can
generate per second. Once the Job has been deployed to the
computing pool, each node brute forces the Digest as per the
Job Split and individually attempts to find out the Message.
On successful discovery of the Message, the computer that
finds it informs other computers about the discovery and the
brute forcing stops. It then sends the Message to the machine
acting as the server and displays it to the user initiating the
Job. The overall architecture is given in Fig. 1.

Fig. 1. Proposed Architecture

1) Network Sub Module
 Multicast sockets are used instead of traditional sockets.

These sockets so do not transmit messages on single channels
to the recipient machines. Instead, they broadcast messages to
all the computers in a particular “Multicast Group”. All
program instances share a common “Multicast Group” and
therefore, all messages from the programs in a network reach
every other instance of the program. This is to avoid user
given details such as Server IP address and so on. The general
aim is to make all nodes mutually aware of each other and to
be able to automatically detect nodes spontaneously
leaving/dropping from the network. This is achieved by usage
of a repeatedly pulsing message dubbed “I’m here” and the
usage of countdown timers. The “I’m here” message is
continuously pulsed in a time period of one second by each
and every node. The message consists of the sender’s IP
Address, Information detailing its hardware power and state of
program, i.e. whether it is currently running a Job or not. Since
this message is broadcasted, every node receives this message
from every other node. Other instances of the program receive
the message and finds out if it has previously received the

Proc. of the Second Intl. Conf. on Advances in Electronics, Electrical and Computer Engineering -- EEC 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6935-2 doi:10.3850/ 978-981-07-6935-2_78

http://3.14.by/

385

message from the sender. In case of a new sender, the sender
is registered as a new computing element and a countdown
timer linked to that particular node is initialized. An
appropriate time-out period, preferably of 2 seconds is set for
this timer. Upon timeout, it is programmed to remove the
computing node associated with it and the timer then disposes
itself. In case of an already existing sender, the countdown
timer associated with that particular sender is looked up and
then reset. This system enables all nodes in a network to be
simultaneously aware of the presence of every other node in
the network. A figurative diagram is shown in figure 2 and 3

Figure 2: System keeping track of availability of nodes – Handling “I’m here
message”

Figure 2: System keeping track of availability of nodes – Handling countdown
Timers’ Timeouts.

2) Job Splitter/Job Receiver
As previously mentioned, a Job is referred to as the

process of cracking a hash Digest. Since the Job is split among
the available computing nodes, the split is required to be
equally distributed among them taking into consideration the
difference in their computing powers. The basic parameters in
determining the Job size are the minimum Key Length of the

brute Forcer and the Character Set used. Furthermore, the split
is decided to be either a Static or a Dynamic split. A static split
is when the maximum key length is specified. In this case, the
total Job size is a definite quantity and the Job can be directly
split among the available nodes. A dynamic split is when the
maximum Key Length is not specified. In this case, a
temporary maximum key length is assumed and the split is
carried out as usual. When each node reaches the end of the
quotas of their Jobs, they assume a new incremented
maximum Key Length. They then compute the next quota of
their Jobs and begin brute forcing again. Examples of both
splits are given in Figure 3.

3) User Interface
The User Interface of the program presents an integrated

system for the user to be able to both prepare Jobs for
processing or to view details on any other currently running
Job requested by another computer. Parameters for a new Job
can be altered before beginning Job processing. Once a Job is
in progress, the state of that particular node is set to “Busy”.
This is to notify other nodes of its unavailability. These Nodes
may have joined the network after a currently running Job has
started processing. Nodes which may have joined after a Job
has begun can start processing a separate Job amongst them.

4) Configuration File Editor
The brute Forcer in each node has a configuration file from

which it reads the parameters: Key length, Character Set and
Character Index. The Character Index is a numeric field which
one uses to specify the starting Key to the Brute Forcer. This
is used by the Job Splitter to specify the range of the Job Size
for each node to Brute Force.

5) Brute Forcer backend
 As aforementioned, The Brute Forcer back end is a

modified version of BarsWF [4]. The modification involves
stopping the Job at the end of a specified range instead of auto
incrementing the Key Length.

The Brute Forcer is executed by the Platform Frontend
upon reception of Job details and the Job split for the
particular Node. It then reads the configuration file as written

Proc. of the Second Intl. Conf. on Advances in Electronics, Electrical and Computer Engineering -- EEC 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6935-2 doi:10.3850/ 978-981-07-6935-2_78

386

by the Platform Frontend, taking in details of the starting
Character Key Index, Minimum Key Length and Character Set
used. If the split is static, the process goes on till either the key
is found or the quota of Job assigned to the node is complete.
In case of dynamic split, the Job process goes on perpetually
until the Message is found or until the Job is cancelled. A
diagrammatic representation of interaction between the
Frontend and the Brute Forcer back end is shown in Figure 4.

Figure 4. Interaction of Platform Frontend and Brute Forcer Backend

Once the Message is found, the Backend reports the
Message to the Frontend which forwards it to the Acting
Server. All Brute Forcers in other machines are ceased by their
respective Frontends upon discovery of the Message.

IV. Results
Initially, the user has to deploy the program on networked

computers. Once running, the program automatically detects
all other machines running the program and registers all active
Nodes. In case of a Node’s resignation from the network,
every other Node becomes immediately aware of the drop out
and removes the computer from its list of available computers.

The user can use any one of the computers to specify Job
details and its associated parameters. The user’s computer
becomes the Acting Server and distributes the Job details
along with the Job split to each of the available computers in
the network including itself. Computers with greater
computing power are given a larger Job Split. The process
goes on until the Message is discovered by a Node or until the
user cancels the Process.

Tests conducted on a single machine using BarsWF
yielded hash generation rates shown in Table 1. Specifications
of a Test Machine used are shown in Table 2.

When networked with 2 computers of same specification,
the total hash generation rate, as expected, was found to be
approximately twice times the rate obtained on a single
machine.

Most importantly, simultaneous usage of multiple CPUs
combined with GPUs over multiple machines in a network
was found to generate 20.79% more hashes than when tested
by conventional use of networked GPUs alone.

TABLE I: TEST COMPUTER SPECIFICATIONS

Specification Detail

Processor

Intel I7-2600K
@ 3.3 GHz

4 Cores
8 logical processors

GPU

NVIDIA GTX 550 TI
CUDA Cores: 192
1024MB GDDR5

Graphics Clock (MHz): 900
Processor Clock (MHz): 1800

RAM 8 GB DDR3

Operating
System

Microsoft Windows 7 Professional

TABLE II: DETAILED SINGLE MACHINE PERFORMANCE

Computing
Device

Hashes Generated (in Million hashes/Second)

CPU0:
CPU1:
CPU2:
CPU3:
CPU4:
CPU5:
CPU6:
CPU7:
CPU Total:

38.82
37.58
38.01
38.24
38.11
38.43
38.28
38.03

305.50

GPU 1163.16

Combined
Total:

1468.66

Graph 1: Overall Hash Rate Generation using 2 Test Machines

Proc. of the Second Intl. Conf. on Advances in Electronics, Electrical and Computer Engineering -- EEC 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6935-2 doi:10.3850/ 978-981-07-6935-2_78

387

V. CONCLUSION AND FUTURE
WORK

The 20.79% speed boost in hash brute forcing is a sizeable
amount considering that the CPU is generally much less
expensive than a specialized gaming graphics card. Moreover,
performance graphics cards are used only by gaming
enthusiasts are not very widely used as compared to Intel I7
and I5 processors which are standard specifications of the
general computer. Furthermore, building custom machines
having multiple graphics cards, say more than two, involve
critical technical know-how and large amounts of funds for
purchase and construction of the equipment.

This establishes the fact that simultaneous usage of CPUs
and GPUs across a network is not only more simpler,
requiring absolutely no custom equipment, but is also more
easily obtainable as one need not specifically buy extra
specialized graphics cards but could just as well rent or use
multiple standard office or home machines having standard
graphics cards coupled with intermediately powerful CPUs to
achieve the same or greater rates of hash generation and
therefore faster hash Digest cracks as opposed to using a few
expensive high performance computers.

Future work would involve extending the Frontend to
support computers or networks of computers across the
internet. In this way, a user could use any Node to simply add
a computer or a network of computers, which may be
connected to even more computers and so on, to the current
network. This significantly increases the ease of physically
networking computers and eliminates the requirement of using
computers to be within the same locality, area or subnet.

 This brings about a possibility of misuse of massive
computer resources. As of present times, botnets, which are
large number of compromised computers that are used to
generate spam, harvest credit card details, etc., are used by
malicious hackers for only directly harmful purposes. I
theorize that future times could see hackers harnessing the
computing power of botnets instead of their internet resources.
An average botnet possesses about 20,000 computers [9] and
occasional Super botnets possess computers by the millions
[8]. Such large number of computers would consist of not only
many high performance gaming machines but also powerful
office or home computers. For approximation calculations,
tests were conducted on an average Intel I5 processor @ 2.5
GHz. They yielded an average of 132 Million hashes/second.
When excluding powerful machines and taking a bare
minimum average of 100 Million hashes/second per computer,
an average sized botnet of 20,000 computers would yield 200
Billion hashes/second. Inclusion of high performance
computers could put this at greater figures of up to 3 or 4
times the current one. An attacker could use this mean of
computing power to crack critical authentication messages,
high security digital fingerprints, complex passwords etc.
which cannot otherwise be cracked by even custom built high
performance cluster machines. All the aforementioned
predictions can easily hold true if the attacker manages to
efficiently distribute the Job among such a large number of
computers.

References
[1] David Apostal, Kyle Foerster, Amrita Chatterjee, Travis Desell:

“Password Recovery Using MPI and CUDA”, 19th Annual International
Conference on High Performance Computing, 2012.

[2] Tomosuke Murakami, Ryuta Kasahara and Takamichi Saito: “An
Implementation and its Evaluation of Password Cracking Tool
Parallelized on GPGPU”, Communications and Information
Technologies (ISCIT), 2010 International Symposium on, pp 534 - 538

[3] Anh-Duy Vu, Jea-Il Han, Hong-An Nguyen, Young-Man Kim, Eun-Jin
Im, “A Homogeneous Parallel Brute Force Cracking Algorithm on the
GPU”, 2011 IEEE

[4] BarsWF, Svarichevsky Mikhail, http://3.14.by/en/md5
[5] Feng Wang, Canqun Yang, Qiang Wu, Zhicai Shi , “Constant Memory

Optimizations in MD5 Crypt Cracking Algorithm on GPU-Accelerated
Supercomputer Using CUDA”, The 7th International Conference on
Computer Science & Education (ICCSE 2012)

[6] Duc H.Nguyen, Thuy T.Nguyen, Tan N.Duong, Phong H.Pham,
“Cryptanalysis of MD5 on GPU Cluster”, in The 2010 International
Conference on Information Security and Artificial Intelligence
(ISAI2010), Chengdu, China, 17-19 December, 2010.

[7] Andrew D. Zonenberg, 2009, Rensselaer Polytechnic Institute, 27
[8] James Wray and Ulf Stabe (2010-10-28). "Researchers: Bredolab still

lurking, though severely injured (Update 3) - Security".
Thetechherald.com

[9] "Hackers Strengthen Malicious Botnets by Shrinking Them". Computer
(IEEE Computer Society). April 2006.

About Author (s):

I’m an outgoing Student of the dept. of
Computer Science and Engineering, CEG,
Anna University. I’ve been actively

interested in researching and implementing
novel ideas, tools and software since pre
college days. I am interested in digital
security, study and beating of reverse
engineering, network programming and
game programming

Proc. of the Second Intl. Conf. on Advances in Electronics, Electrical and Computer Engineering -- EEC 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6935-2 doi:10.3850/ 978-981-07-6935-2_78

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5647048
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5647048
http://3.14.by/
http://3.14.by/en/md5
http://hpcc.hut.edu.vn/~tandn/rp067_Vol.2-S0343.pdf
http://www.thetechherald.com/article.php/201043/6346/Researchers-Bredolab-still-lurking-though-severely-injured-Update-3
http://www.thetechherald.com/article.php/201043/6346/Researchers-Bredolab-still-lurking-though-severely-injured-Update-3
http://csdl2.computer.org/comp/mags/co/2006/04/r4017.pdf

