
International Conference on Advanced Computing, Communication and Networks‘11

414

Design considerations for a schema language for JavaScript Object Notation

S. Jeylatha

Department of Computer Science and Engineering

BITS – PILANI

Dubai, U.A.E

jeylatha@yahoo.com

Munawwar Firoz

Department of Computer Science and Engineering

BITS – PILANI

Dubai, U.A.E

munawwarfiroz@hotmail.com

Abstract—This paper deals with a schema format for

JavaScript Object Notation based on the current IETF

JavaScript object notation schema specification. JavaScript

object notation is a text-based data interchange format. The

data transferred between two users or modules may have an

application specific structure. The aim of this paper is to help

application developers ease their task of data validation,

documentation and to provide other structural information

about data, by defining the structure of the data through the

proposed JavaScript object notation schema.

Keywords—JavaScript Object Notation, JSON, Text-based

data interchange, JSON Schema.

I. INTRODUCTION

JavaScript Object Notation (JSON)
[2][3]

 is a text-based

data interchange format that is a well known alternative to

XML. Its popularity is mainly due to its readability and

simplicity in quickly implementing a general script to

exchange data between a server and client. JSON isn‘t

specific to the JavaScript language and can be used with any

programming language. There are many implementations

that aid in encoding and decoding JSON data through

various programming languages, like the Yahoo! User

Interface JSON utility and Dojo Toolkit for JavaScript, and

the built-in JSON library for PHP.

 JSON is a relatively new format as compared to

XML, and does not enjoy all the technologies that XML has

got, like XML schema. However various efforts are being

made to make such comparable technologies, and in fact are

already being used by many, even though these efforts are

not standardized (currently). This paper is aimed at bringing

a modified JSON schema representation based on such an

existing work.

 This paper is organized into six sections followed

by references. Section II briefly states the objectives and

motivation behind the paper. Section III A lists all acronyms

used in this paper. Section III B and the rest describe the

details of the schema specification.

II. Objectives and Motivation

The current IETF schema specification
[1]

 has brought an

effort to bring a schema format for JSON. However, there is

a strong requirement to extend the JSON schema with a

named conceptual entity defining the structure of the data

represented and organized into ―schema classes‖. This way

defining a schema would have conceptual similarities to

defining a context free grammar. This also makes the

schema easily definable and brings a quick learning curve.

Another requirement is that there needs to be a mechanism

for defining ordered arrays.

With an objective to incorporate these needs, this paper

aims to specify a modified schema format for JSON based

on the current IETF schema specification
[1]

.

III. JAVASCRIPT OBJECT NOTATION SCHEMAS AND SCHEMA

CLASS DESIGN

The schema specification mentioned here is a modified

version of the JavaScript Object Notation Schema working

draft at IETF
[1]

. The specification is sub-divided into two

broad categories, namely core schema and hyper schema. In

the most general terms, core schema aims at data validation

and hyper schema provides additional information about the

data (meta-data) and relations between data.

A. Abbreviations and Acronyms

CSS : Cascaded Style Sheets.

HTTP : Hypertext Transfer Protocol.

IETF : Internet Engineering Task Force.

ISO : International standard Organization.

JSON : JavaScript Object Notation.

MIME : Multipurpose Internet Mail Extensions.

PHP : Hypertext Preprocessing.

URI : Uniform Resource Identifier.

XML : eXtensible Markup Language.

mailto:jeylatha@yahoo.com
mailto:munawwarfiroz@hotmail.com
http://tools.ietf.org/id/draft-crockford-jsonorg-json-04.txt
http://tools.ietf.org/html/draft-zyp-json-schema-03
http://tools.ietf.org/html/draft-zyp-json-schema-03
http://tools.ietf.org/html/draft-zyp-json-schema-03

 415

B. Terminology

Primitive data types such as object, array, boolean,

number and integer have the same definition as defined in

the JSON schema specification
[1]

.

Schema document: A schema definition contained in a

single file. Like any other JSON object, it begins with a ‗{‗

and ends with ‗}‘.

Instance: JSON data consists of name/value pairs. The

phrase ‗instance value‘ denotes a value that the schema

describes. The phrase ‗instance name‘ denotes the name

(part) of the pair. ―Instance‖ can also be described for a

particular type. For example, ―Instance object‖ would mean

that the value is described to be of an object data type.

Attribute: JSON schema consists of name/value pairs.

The phrase ‗attribute value‘ denotes the value (part) of the

pair and ‗attribute name‘ denotes the name (part) of the pair.

Schema class: A named object (also known as the ‗ID‘ of

the class), containing attributes that defines the structure of

the data entity.

C. General structure of a JSON schema definition

A JSON schema document must contain schema class

definitions and a way to answer the question ―Which part of

the JSON data follows which schema class?‖. Hence the

schema document body contains an attribute named

―classes‖ (which is an object that contains schema class

definitions) and an attribute named ―apply‖ (which is an

array of object, with each object indicating the class

references to portions of the JSON data).

The ―to‖ attribute references a location in the JSON data

and can either use dot notation (myProducts.product1) or

square bracket notation (myProducts[―product1‖]). ―class‖

references a class name/ID.

The general structure of a schema document is shown in

Figure 1. At the top is the JSON data and the bottom is

schema definition for the data. With this schema it is

understood that myProducts.product1 (from the JSON data)

must follow the schema class named ―Product‖. This has

been specified in the ―apply‖ attribute.

Figure 1 – General structure of a schema document

The following sections define the core and hyper

schema, which are the attributes that can be used to define a

schema class.

D. Core Schema

type: A string or array - This attribute defines what primitive

type the schema instance value must contain. The allowed

types are string, number, integer, boolean, object, array,

null, any and a special type known as ‗union type‘. If type

isn‘t specified then the default is any.

Union type is an array of strings, where each string denotes

a primitive type that indicates that the instance value must

be either one of the types mentioned in the array.

{"type":["string","integer"]}. This indicates that the type

should be either string or integer.

required: boolean - If true, indicates that the instance is

mandatory. Default: false

description: string - Provides description of the instance

property or schema class.

enum: Provides an enumeration of all the values that are

valid for the instance property. This value must be an array

which represents possible values for the instance value.

default: Defines the default value for the instance when the

instance is undefined.

For the following JSON data...

{

 "myProducts": {

 "product1": {

 "id": 4874,

 "name": "Nike - footwear",

 "price": 130

 }

 }

}

…a sample schema definition

{

 "classes": {

 "Product": {

 < Here is where all the attributes and

 properties (like id, name and price) of

 the class will be defined >

 }

 },

 "apply": [

 {

 "class": "Product",

 "to": "myProducts.product1"

 }

]

}

http://tools.ietf.org/html/draft-zyp-json-schema-03

 416

base: string or object - This attribute points to another

schema class, which the current schema shall inherit and

may extend. This attribute can be an object that has two sub-

attributes, namely class and schemaURI.

class: string – Name of the class which the current schema

class will extend from.

schemaURI: A URI
[8]

 to an external JSON schema

document. The schema class referenced with the class

attribute must be defined in the mentioned schema

document. If this attribute value is a special value named

―$this‖, then it indicates that the class is defined within the

current schema document. This attribute is optional and it

defaults to ―$this‖ when not specified.

If the attribute is a string, then the string should be the name

of a schema class in the current document.

format: This attribute defines the meaning of a string,

integer or numeric instance value. The following formats are

predefined:

 date-time : This should be a date in ISO 8601
[5]

 format

of YYYY-MM-DDThh:mm:ssZ in UTC time. This is

the recommended form of date/timestamp.

 date : This should be a date in the format of YYYY-

MM-DD. It is recommended that you use the "date-

time" format instead of "date" unless you need to

transfer only the date part.

 time : This should be a time in the format of hh:mm:ss.

It is recommended that you use the "date-time" format

instead of "time" unless you need to transfer only the

time part.

 utc-millisec : This should be the difference, measured in

milliseconds, between the specified time and midnight,

00:00 of January 1, 1970 UTC. The value should be a

number (integer or float).

 color : This is a CSS color (like "#FF0000" or "red"),

based on CSS 2.1
[6]

.

 phone : This should be a phone number (format may

follow E.123
[7]

).

 uri : This value should be a URI
[8]

.

The following attributes are only significant when the

instance is of the specified type (mentioned in the sub

headers):

 For objects:

properties: An object that defines the values

(properties) that are valid within the schema instance

object. For a property definition, all attributes that can

come within a schema class can also come as attributes

within a property unless otherwise stated.

additionalProperties: boolean- ―Can the instance object

have additional properties which are not specified in the

properties attribute?‖. If yes then this attribute should

be true, else false. Default: true.

 For arrays

items: object or array of objects - Defines the allowed

items in an instance array. (More explanation at section

III F: Ordered Arrays)

uniqueItems: Boolean that indicated whether the items

in the array are unique.

Two instance are consider equal if they are both of the

same type and

are null;

or are boolean/numbers/strings and have the same

value;

or are arrays, containing the same number of items, and

each item in the array is equal to the corresponding item

in the other array;

or are objects, containing the same property names, and

each property in the object is equal to the corresponding

property in the other object.

 For numbers

minimum: number - Minimum value of an instance

number.

maximum: number - Maximum value of an instance

number.

exclusiveMinimum: boolean – If true, the value of the

instance number cannot be equal to the number defined

by the minimum attribute. Default: false

exclusiveMaximum: boolean – If true, the value of the

instance number cannot be equal to the number defined

by the maximum attribute. Default: false

 For strings

pattern: string- A regular expression string defined by

the ECMAScript 5 standard
[4]

. The instance must

confirm to the regular expression.

Figure 2 builds on to define the ―Product‖ class from

Figure 1. Attributes from the core schema such as type

and required are used here.

http://www.w3.org/TR/2007/CR-CSS21-20070719/syndata.html#color-units
http://www.itu.int/rec/T-REC-E.123-200102-I/en
http://www.ecma-international.org/publications/standards/Ecma-262.htm

 417

Figure 2 - Complete schema based on JSON data from Figure 1

E. Hyper Schema

meta: An object or array where each attribute/item gives

additional information about the class attributes and possible

relations. This attribute can only be defined in a class (and

cannot be defined anywhere within the properties attribute).

Attributes that come within meta attribute can be application

specific and are open to other standards, except for the

following attributes:

href: URI
[8]

 to external resource.

method: POST or GET HTTP method

encodingType: The encoding type of the request that might

be required for a POST HTTP message.

rel: A reference to a property in the properties object. Path

to sub-properties can also be specified, which are separated

from parent properties by a dot (That is, in the format

property.subProperty). The path isn‘t a real path to the

attribute, but only indicates which property is being referred

to. For example, from Snippet 2 ‗name‘ is a property, but

name.type isn‘t a property.

contentType: For string instance -The content‘s MIME
[9]

type can be specified by this attribute. For binary data

encoded as a string, this attribute indicates what type of

content is contained within the string, example image/jpeg

or image/gif.

contentEncoding: For string instance - For binary data

encoded as a string, an encoding scheme (MIME
[9]

) can be

specified, such as application/base64.

Schema validators will pass this meta information to the

application during validation. Figure 3 demonstrates a class

with meta information. Here href indicates that the web link

to the product is a pattern based on the product ID.

Figure 3 – A class with meta information giving a link to a web

page based on the product ID.

F. Ordered Arrays

For instance arrays, it is possible to define the order at

which the data must be arranged. This can be defined at the

items attribute of a class.

The items attribute is an array of rules. A rule is either an

object or a string where an object has three sub-attributes,

namely item, schemaURI (optional) and quantifier

(optional). item indicates a primitive type or class name.

schemaURI has the same definition as described in Section

III D - under base attribute.

quantifier specifies a symbol that indicates the number

of occurrences of the item. The following symbols are

recognized:

*: 0 or more occurrence. This is the default when no

quantifier is defined.

+: At least 1 or more occurrence

?: Either 1 or no occurrence

{X}: Exactly X occurrences

{X,}: At least X occurrences

{X,Y}: Between X and Y occurrences (inclusive)

"Product": {

 "type": "object",

 "properties": {

 "id": {

 "type": "integer",

 "required": true

 },

 "name": {

 "type": "string"

 },

 "price": {

 "type": "number",

 "required": true

 }

 },

 "meta": {

 "ProductURL": {

 "href": "http://www.some.com/?id={id}",

 "method": "GET"

 }

 }

}

{

 "classes": {

 "Product": {

 "type": "object",

 "properties": {

 "id": {

 "type": "integer",

 "required": true

 },

 "name": {

 "type": "string"

 },

 "price": {

 "type": "number",

 "required": true

 }

 }

 }

 },

 "apply": [

 {

 "class": "Product",

 "to": "myProducts.product1"

 }

]

}

http://www.faqs.org/rfcs/rfc1521.html
http://www.faqs.org/rfcs/rfc1521.html

 418

If the rule is a string, then the string should specify a

primitive type or a class name. A string rule is equivalent to

an object with quantifier as ‖*‖ and schemaURI as ―$this‖.

Union rules can also be specified, which is an array of

rules, which indicates that at least one of the rules in the

array should be satisfied.

G. JSON Schema Case Study

Figure 4, demonstrates on how to transfer JPEG images

through encoded strings. Here ―rel‖ points to the property

that contains the string. And contentType and

contentEncoding helps the application to determine the

content and encoding format.

Figure 4: An example demonstrating the use of meta data.

Figure 5, demonstrates the use of defining ordered

arrays, in a case where vertices of a polygon needs to be

transferred to or from a user. For a quadrilateral, we specify

four pairs of vertices, which are sequentially arranged in an

array. To define this structure, here we define three classes,

namely vertex - which is an array of x and y co-ordinates,

quadrilateral – which is an array of four ―vertex‖ classes

and quadrilateralList – which is an array of ―quadrilateral‖

classes.

For the following JSON data

{

 "polygons": {

 "quadrilaterals": [

 {

 "id": 1,

 "vertices": [[10,10],[10,-10],[-10,-10],[-10,10]]

 },

 {

 "id": 2,

 "vertices": [[10,9],[10,-9],[-10,-10],[-10,10]]

 }

]

 }

}

...for the following JSON data

{

 "myProducts": [

 {

 "id": 4874,

 "name": "Nike - footwear",

 "price": 130,

 "productImage":

"VGhpcyBpcyBhbiBpbWFnZS5JbWFnZSAx"

 },

 {

 "id": 4259,

 "name": "Reebok - footwear",

 "price": 110,

 "productImage":

"VGhpcyBpcyBhbiBpbWFnZS5JbWFnZSAy"

 },

 {

 "id": 4936,

 "name": "Addidas - footwear",

 "price": 135,

 "productImage":

"VGhpcyBpcyBhbiBpbWFnZSBJbWFnZSAz"

 }

]

}

A schema definition...

{

 "classes": {

 "Product": {

 "type": "object",

 "properties": {

 "id": {

 "type": "integer",

 "required": true

 },

 "name": {

 "type": "string"

 },

 "price": {

 "type": "number",

 "required": true

 },

 "productImage": {

 "type": "string"

 }

 },

 "meta": {

 "ProductURL": {

 "href": "http://www.some.com/?id={id}",

 "method": "GET"

 },

 "imageInfo": {

 "rel": "productImage"

 "contentType": "image/jpeg",

 "contentEncoding": "application/base64"

 }

 }

 },

 "ProductList": {

 "type": "array",

 "items": ["Product"]

 }

 },

 "apply": [

 {

 "class": "ProductList",

 "to": "myProducts"

 }

]

}

 419

Figure 5: An example demonstrating the use of ordered arrays.

H. Conclusion and Direction for Future Work

This paper dealt with JavaScript Object Notation

Schema. A modified schema structure based on an existing

work has been proposed for use after a formal trial. It aims

at bringing a higher level structure to JSON schema and it

introduces a concept of schema classes. It also introduces a

way to define ordered arrays. This specification can be

extended by bringing additional attributes underneath the

meta attribute. Also a mechanism to define inner classes

would also be of convenience.

 Schemas can help application developers to easily

validate data with help of a schema and a schema validator.

This way validation code need not be tightly integrated into

the application. Furthermore, it also encourages reuse of

code. Hence, future work will also focus on bringing a

strong implementation of a JSON schema validator in

various programming languages.

ACKNOWLEDGMENT

The authors are thankful to Dr. B. Vijayakumar,

Associate Professor – Computer Science, BITS-Pilani for

his valuable suggestions while revising this paper.

REFERENCES

[1] Gary Court, ―A JSON Media Type for Describing the Structure

and Meaning of JSON Documents‖, 2010 Nov, Internet:
http://tools.ietf.org/html/draft-zyp-json-schema-03

[2] D. Crockford, ―JavaScript Object Notation‖, ,Internet:

http://tools.ietf.org/id/draft-crockford-jsonorg-json-04.txt, 2006
Feb

[3] D. Crockford, The application/json Media Type for JavaScript

Object Notation, Network Working Group, The Internet
Society, July 2006, Report No: RFC-4627, Sponsored by

International Engineering Task Force

[4] Brendan Eich inventor, ―ECMAScript Language Specification‖,
ECMA-262 standard, ECMA international 2009, Internet:

http://www.ecma-

international.org/publications/standards/Ecma-262.htm
[5] International Standard Organization, ―Data elements and

interchange formats — Information interchange —

Representation of dates and times‖, Switzerland, ISO Standard,
Reference: ISO 8601:2004(E), 2004 Dec 01

[6] Lie H. W., Bos B., World Wide Web Consortium,‖ Cascading

Style Sheets Level 2 Revision 1 (CSS 2.1) Specification‖, W3C
Candidate Recommendation,, Section 4.3.6 - Colors, Internet:

http://www.w3.org/TR/2007/CR-CSS21-

20070719/syndata.html#color-units
[7] Recommendation E.123, “Notation for national and

international telephone numbers, e-mail addresses and web

addresses‖, International Telecommunication union (ITU),
Internet: http://www.itu.int/rec/T-REC-E.123-200102-I/en

[8] T. Berners-Lee, R. Fielding, L. Masinter, Uniform Resource

Identifier (URI): Generic Syntax, The Internet Society, Network
Working Group, 2005, Report No: RFC- 3986, Sponsored by

Internet Engineering Task Force

[9] Borenstein N., Freed N., ―MIME format, Mechanisms for

Specifying and Describing the Format of Internet Message

Bodies‖, Reference: RFC 1521.Internet:

http://www.faqs.org/rfcs/rfc1521.html , 1993 Sep

A schema definition for the above data

{

 "classes": {

 "vertex": {

 "type": "array",

 "items": [{"item": "number", "quantifier": "{2}"}],

 },

 "quadrilateral": {

 "type": "object",

 "properties": {

 "id": {

 "type": "integer",

 "required": true

 },

 "vertices": {

 "type": "array",

 "items": [{"item": "vertex", "quantifier": "{4}"}],

 "required": true

 }

 }

 },

 "polygon": {

 "type": "array",

 "items": ["quadrilateral"]

 }

 },

 "apply": [

 {

 "class": "polygon",

 "to": "polygons.quadrilaterals"

 }

]

}

http://tools.ietf.org/html/draft-zyp-json-schema-03
http://tools.ietf.org/id/draft-crockford-jsonorg-json-04.txt
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.w3.org/TR/2007/CR-CSS21-20070719/syndata.html#color-units
http://www.w3.org/TR/2007/CR-CSS21-20070719/syndata.html#color-units
http://www.itu.int/rec/T-REC-E.123-200102-I/en
http://www.faqs.org/rfcs/rfc1521.html

