

214

Goal Oriented Acceptance Testing For Multi
Agent System: V-Model Extension

Mandeep Kaur Balraj Singh Amandeep Kaur

Abstract -- Agent based Software Engineering, initially
derived from Artificial Intelligent (AI), is now becoming
increasingly popular among software engineers to develop
modern and complex intelligent systems. Agent oriented
systems contains intelligent agents that can perform a task
autonomously. They are goal oriented extension of objects.
In the recent years, with the emergence of AOSE, trails of
various traditional Object oriented approach are being
applied on it, to make it more and more acceptable in
Software Industry. Acceptance testing is an integral part of
traditional testing and it has drawn the interest of various
researchers who are working on AOSE concept. No formal
acceptance testing technique has been proposed yet for AO
systems. The paper proposes a formal way of conducting
Acceptance testing for agent oriented system by extending
the popular V-Model for software testing. A two steps testing
approach is proposed and a new phase “Goal Oriented

Acceptance Testing” is added in V-Model. Goal Oriented
Acceptance Testing lies on the demarcation of Internal and
External tests. A tester from the developer team performs
Goal Oriented Acceptance Testing on user’s end. Once the

Goal Oriented Acceptance Testing is passed, the user can go
for general acceptance testing with non-agent-based and
non-technical tests for his own satisfaction.

Keywords –agent; software agent; testing;
acceptance testing; goal oriented acceptance testing

Mandeep Kaur

Department of Computer Science and Engineering,
Lovely Professional University
India
mandeepkaurgirn@yahoo.com

Balraj Singh

Department of Computer Science and Engineering,
Lovely Professional University
India
balraj.13075@lpu.co.in

Amandeep Kaur

Department of Computer Science and Engineering,
Lovely Professional University
India
aman_heyer@yahoo.co.in

I. Introduction

Agent-Oriented Software Engineering is a programming
paradigm where the software agents is the centeric idea
behind construction of the software is centered-around the
concept of software agents. They could be taken as

abstractions of objects. In a way specific to its class of
agents, exchanged messages are interpreted using
receiving agents. At its core, in contrast to object-
oriented programming which has objects, AOP has
externally specified agents [1].

A. Properties of an Software Agent
By an agent-based system, we mean one in which the key
abstraction used is that of an agent. By an agent, we mean
a system that enjoys the following properties [2]:

 Pro-Activeness: agents are able to exhibit goal-
directed behaviour by taking the initiative and do
not simply act in response to their environment.

 Autonomy: agents encapsulate some state, and
make decisions about what to do based on this
state, with no inference of human or other system

 Social Ability: agents interact with other agents
via some kind of agent-communication language,
and typically have the ability to engage in social
activities in order to achieve their goals.

 Reactivity: agents are situated in an environment,
are able to perceive this environment, react to the
changes occurring in the environment due to
controllable or uncontrollable parameters.

B. Tropos
 An AOSE methodology, Tropos, which covers the whole
software development process and is based on two key
ideas [3]:

 First, from early analysis down to the actual
implementation, the notion of agent and all

Proc. of the Second Intl. Conf. on Advances in Electronics, Electrical and Computer Engineering -- EEC 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6935-2 doi:10.3850/ 978-981-07-6935-2_43

215

related mentalistic notions that are used in all
phases of software development.

 Second, the kind of interactions that should
occur between software and human agents,
Tropos covers also the very early phases of
requirements analysis, thus allowing for a deeper
understanding of the environment where the
software is operational.

Tropos methodology spans five phases:

 Early requirements, concerned with the problem
understanding by studying an organizational
setting where the intended system will operate

 Late requirements, where the intended system is
described with relevant functions (hard goals)
and qualities (soft goals) and within its
operational environment. The intended system is
introduced as a new actor.

 Architectural design, where the system’s total

architecture is defined in terms of interconnected
through data, control, subsystems and other
dependencies. More system actors are
introduced.

 Detailed design, defines the behaviour of each
architectural component in more detail including
specification of communication and coordination
protocols. Agents' beliefs, capabilities, and goals
are specified in detail using existing modelling
languages like UML or AUML, along with the
interaction between them should occur between
software and human agents.

 Implementation, during this phase, the Tropos
specification, produced during detailed design, is
transformed into a skeleton for the
implementation. This is done through a mapping
from the Tropos constructs to those of a target
agent programming platform, such as JADE.

C. Test type
There are four types of testing: Agent testing, Integration
testing, System testing and Acceptance testing. The
objectives and scope of each type is described as follows:

 Agent testing: The smallest unit of testing in
agent-oriented programming is an agent. Testing
a single agent consists of testing its inner
functionality and agent’s capabilities to fulfil its
goals and to sense and effect the environment.

 Integration testing: An agent has been unit-
tested; we have to test its integration with

existing agents. Integration testing make sure
that a group of agents and environmental
resources work correctly together which involves
checking an agent works properly with the
agents that have been integrated before it and
with the “future” agents that are in the course of

Agent testing or that are not ready to be
integrated.

 System testing: Agents may operate correctly
when they run alone but incorrectly when they
are put together. System testing involves making
sure all agents in the system work together as
intended. Specifically, one must test the
interactions among agents (protocol,
incompatible content or convention, etc.) and
other concerns like security, deadlock.

 Acceptance testing: Test the MAS in the
customer execution environment and verify that
it meets the stakeholder goals, with the
participation of stakeholders.

D. Goal type
Different perspectives give different goal classifications.
For instance, classify agent goals in agent programming
into three categories, namely perform, achieve, and
maintain, according to the agent's attitude toward them.
Goals are classified into the following types according to
the different phases of the process:

 Stakeholder goals: Represent stakeholder
objectives and requirements towards the intended
system. This type of goal is mainly identified at
the early requirements phase of Tropos.

 System goals: Represent system-level objectives
or qualities that the intended system has to reach
or provide. This type of goal is mainly specified
at the late requirements phase of Tropos.

 Collaborative goals: Require the agents to
cooperate or share tasks, or goals that are related
to emergent properties resulting from
interactions. This type of goal can be called also
as group goal, and they often appear at the
architectural design phase of Tropos.

 Agent goals: Belong to or are assigned to
particular agents. This type of goal appears when
designing agents.

Proc. of the Second Intl. Conf. on Advances in Electronics, Electrical and Computer Engineering -- EEC 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6935-2 doi:10.3850/ 978-981-07-6935-2_43

216

E. Goal-oriented testing
Tropos integrates testing by proposing the lower branch
of the V and a systematic way to derive test cases from
Tropos modelling results. The left branch of the V
represents the specification stream, and the right branch
of the V represents the testing stream where the systems
are being tested (against the specifications defined on the
left-branch). The V-Model is a representation of the
system development process, which extends the
traditional waterfall model. Tropos guides the software
engineers in building a conceptual model, which is
incrementally refined and extended, from an early
requirements model to system design artefacts and then to
code, according to the upper branch of the V. One of the
advantages of the V-model is that it describes not only
construction stream but also testing stream (unit test,
integration test, acceptance test) and the mutual
relationships between them.

Fig 1: V-Model of Goal-Oriented Testing

Two levels of testing are distinguished in the model. At
the first level of the model (external test executed after
release), stakeholders (in collaboration with the analysts),
during requirement acquisition time produce the
specification of acceptance test suites. These test suites
are one of the premises to judge whether the system fulfils
stakeholders’ goals. At the second level (internal test
executed before release), developers refer to: goals that
are assigned to the intended system, high-level
architecture, detailed design of interactions and
capabilities of single agents, and implement these agents.
From the systematic literature review, it has been noted
that there had been very less attention given to formal
Acceptance Testing of Agent Oriented System. Most of
the things have been done for Agent Testing, Integration

Testing and Unit Testing. So, the problem that study deals
is Acceptance Testing of Agent Oriented System, which
is still and area of concern. Confidence building of users
and developers in autonomous agents is the primary goal
of testing MAS.

II. Proposed System
As we have seen in the above figures and graphs, that an
AO system can work well on developers end but may fail
on user’s end, due to agent’s autonomous specifications.

User is complete layman on the technical issues of agent
and its working. So, it proposed that Acceptance testing
should be on two levels:

 Once the system is installed on uses side, a
member/tester from development team must visit
the site and conduct an in-depth technical
acceptance testing to ensure that all agents are
working correctly on the user side also,
according to the specifications. These should be
those technical aspects that user may ignore or
may not know. This is what is referred as Goal
Oriented Acceptance Testing.

 Once the Goal Oriented Acceptance testing is
passed and it is made sure that all agents are
working correctly in user scenario also, then
second level of acceptance testing must be
conducted by user. This would be general
acceptance testing as conducted in all other
paradigms to for the user satisfaction. This level
of acceptance testing will not include details
about agents and their automations. User will
just check the AO system is meeting his general
requirements.

To make this “two level acceptance testing” successful,

V-Model of testing have been extended and an addition
step of “Goal Oriented Acceptance Testing” have been

added.

Proc. of the Second Intl. Conf. on Advances in Electronics, Electrical and Computer Engineering -- EEC 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6935-2 doi:10.3850/ 978-981-07-6935-2_43

217

Fig 2: Extension for V-Model for Goal Oriented Acceptance

Testing

In the extension for V-Model, an additions phase called
“Goal Oriented Acceptance Testing” has been placed on

the demarcation of Internal and External Tests. This is
because Goal Oriented Acceptance Testing is done by a
tester who is a part of internal development team, but it is
done at user’s end which is an external place for him.
For Goal Oriented Acceptance Testing, the tester must
follow Fig 3.

Fig 3: Flowchart for Goal Oriented Acceptance Testing

The V-Model is a representation of the system
development process, which extends the traditional
waterfall model. Tropos guides the software engineers in
building a conceptual model, which is incrementally
refined and extended, from an early requirements model
to system design artefacts and then to code, according to
the upper branch of the V. With an added phase of Goal

Oriented Acceptance Testing, AO systems will perform
better on user’s side and both developers and users will

gain confidence on AOSE.

III. Implementation
A Jadex based game called Hunter Prey was downloaded
for testing. This game is freely available with its source
codes on Jadex website [4]. The game Hunter Prey was
executed in Eclipse IDE [5]. The game had some
specifications:

 The hunter prey scenario consists of two kinds of
creatures living in a grid world.

 The basic task of hunters is to chase, while preys
move around looking for food.

 Both kinds of creatures have to act
autonomously in the environment on basis of
their current local view, experiences made in the
past and communications with others. Besides
hunter and preys the environment accommodates
other passive world objects.

 On the one hand there are trees on many squares
that prohibit creatures running on such fields and
on the other hand little plants grow at random
squares at the map.

 These plants can be eaten by the preys if they are
on the same field.

 The scenario is round-based with a fixed time
slot for each round. This means that all creatures
in the world have to issue their next action
(moving to some adjacent square or eating
something on the current square) with that round
time.

 If no action is announced no action will be
executed.

 The environment will decide in each round if an
action succeeds or fails.

Finally, Zeta Test [6] was used to create and execute test

cases on the game.

Fig 4: Snapshot of Hunter Prey Game

Proc. of the Second Intl. Conf. on Advances in Electronics, Electrical and Computer Engineering -- EEC 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6935-2 doi:10.3850/ 978-981-07-6935-2_43

218

The game is also available in executable form on the web
server of Jadex website [7].
When the game was executed on the user end, it was
noted that some the specifications of the game were not
met. Not all agents were working properly. But the same
game was running perfectly on the web server, meeting
all the specifications.
So, it was some compatibility error which was occurring
on user’s end. So, this required a Goal Oriented

Acceptance testing. Some acceptance test case based on
Game and agent scenarios were designed.
The test cases were then feed in Zeta Test software and
executed.

A. Test Case Run for Hunter Prey Game
The testing procedure was conducted three times.
Firstly on the correctly working game on web server and
following results were achieved.

Fig 5: Test result for Goal Oriented Acceptance testing on

Hunter Prey Game on Web Server

All the test cases conducted on the game Hunter Prey on
web server were successful. The game worked perfectly
on the web server and showed no deviation from the user
specification. 100% of them were successful.
Secondly, testing was done for Hunter Prey game on user
end and following results were achieved

Fig 6: Test result for Goal Oriented Acceptance testing on

Hunter Prey Game on User End

Not all test cases were successful for the Hunter Prey
game when executed on the user’s end. 40% of them were

successful, 40% of them failed, and 20% of them were not
successful.
Finally a formal retesting is done by user to ensure that all
basic concepts are met irrespective to agent automation.

Fig 7: Test result for General Acceptance testing on Hunter

Prey Game by User

Not all test cases were successful for the Hunter Prey
game when executed by user with non-technical aspects.
60% of them were successful, 40% of them failed.

B. Collective Analysis of all three testing
Table 5: Collective Table for Test Score of each test case for

Hunter Prey Game in all three scenarios

Sr.
No
.

Test Cases Acceptan
ce Testing
on
Developer
's System

Acceptanc
e Testing
on User's
System

Retesti
ng by
User

1

Pray is
displayed on
screen 2 2 2

2

Pray moves
autonomously
around the
grid 2 2 2

3

Pray doesn't
collide with
trees on grid 2 2 N/A

4
Pray eats
grass 2 1 N/A

5

Grass is
displayed on
screen
autonomously
and randomly 2 2 2

6

Grass
disappear
when eaten 2 1 N/A

7 Grass 2 1 N/A

Proc. of the Second Intl. Conf. on Advances in Electronics, Electrical and Computer Engineering -- EEC 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6935-2 doi:10.3850/ 978-981-07-6935-2_43

219

reappears
after random
time

8

Hunter is
displayed on
screen 2 0 0

9

Hunter moves
around the
grid
autonomously 2 0 0

10

Hunter
doesn’t

collide with
trees on grid 2 0 N/A

11
Hunter eats
pray 2 0 N/A

12

Multiple
Prays are
displayed on
screen 2 2 2

13

Multiple
Prays moves
autonomously
around the
grid 2 2 2

14

Multiple
Prays
doesn't
collide with
trees on
grid 2 2 N/A

15

Multiple
prays eats
grass 2 1 N/A

16

Multiple
Hunters are
displayed
on screen 2 0 0

17

Multiple
Hunters
moves
around the
grid
autonomous
ly 2 0 0

18

Multiple
Hunters
doesn’t

collide with
trees on
grid 2 0 N/A

19

Multiple
Hunters
eats pray 2 0 N/A

20

An empty
grid is
displayed
with trees
only 2 2 2

Total
Testing
Score 40 20 12

Table Legends for Y-Axis

Successful 2
Not Successful 1

Failure 0
Tests not
performed by
user

N/A

Fig 8: Collective Graph for Test Score of each test case for

Hunter Prey Game in all three scenarios

Collectively, it has been noted that,
All the test cases conducted on the game Hunter Prey on
web server were successful. The game worked perfectly

0

1

2

1 3 5 7 9 11 13 15 17 19

Acceptance
Testing on
Developer's
System

Acceptance
Testing on
User's
System

Proc. of the Second Intl. Conf. on Advances in Electronics, Electrical and Computer Engineering -- EEC 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6935-2 doi:10.3850/ 978-981-07-6935-2_43

220

on the web server and showed no deviation from the user
specification. 100% of them were successful.
Not all test cases were successful for the Hunter Prey
game when executed on the user’s end. 40% of them were

successful, 40% of them failed, and 20% of them were not
successful.
Not all test cases were successful for the Hunter Prey
game when executed by user with non-technical aspects.
60% of them were successful, 40% of them failed.

Fig 9: Graph based on total test scores

The above graph shows the total test scores acquired by
all three testing scenarios. The acceptance testing on
Developer’s System passed all test cases and have total

score of 40. Acceptance testing on User’s System passed

on 40% tests and 20% were not successful. So, it scored
20. Lastly, Retesting by user on non-technical non-agent
based testing scored lowest 12.

IV. Conclusion and Future Scope
In this paper, two step acceptance testing and an extension
for V-Model for testing has been proposed. This extended
V-Model has an additional phase called “Goal Oriented

Acceptance Testing”. This phase lies on the demarcation

of Internal and External tests and makes the Step 1 of
Acceptance Testing. In this phase, a tester from developer
team visits the site of customer where the AO system is
installed and checks whether all agents are working
according to their goals or not. The tester must ensure that
all agents fulfil their basic agent properties, i.e., Pro-
activeness, Social Ability, Reactivity, and Autonomous
Behaviour. The phase Goal Oriented Acceptance Testing

lies on the demarcation of Internal and External tests
because it is performed by a tester of developer team on
the user’s end. Once the Goal Oriented Acceptance
Testing is complete it proceeds to Step 2. The step 2 is
general Acceptance testing done by user for his own
satisfaction. It is done in a less technical way and in
accordance to the user specification. When the AO system
passes both the Acceptance Tests, it is ready to use.
In this thesis, a small AO game is tested using the
proposed extended V-Model. In future, massive industry
oriented AO systems can be tested using this extended
model. Testing such massive AO systems will bring more
enhancements to the newly proposed extension of V-
Model.

V. References
[1]http://en.wikipedia.org/wiki/Agent- oriented_programming
[2]Wooldridge M. (1991), “Agent-Based Software Engineering”, ACM
[3]Houhamdi Z. Athemena B.(2011) “Structured Sytem Test Guide

Generation Process for Multi-Agent System”, International Journal of

Computer and Engineering
[4]http://jadex-agents.informatik.uni-
hamburg.de/xwiki/bin/view/About/Overview
[5]http://www.eclipse.org/
[6]http://www.zeta-test.com/index.html
[7]http://jadex-agents.informatik.uni-
hamburg.de/xwiki/bin/view/Usages/Examples
[8]Castle C.J.E (2011) “Principles and Concepts of Agent-Based
Modelling for Developing Geospatial Simulations”, Academia.edu
[9]Cu D. Nguyen, Anna Perini, Carole Bernon, Juan Pav´on, and John
Thangarajah (2011) “Testing in Multi-Agent Systems”, Springer
[10]Fazziki EL A, Nouzri S, Sadgal M.(2012) “An Agent-Oriented
Information System: A Model Driven Approach”, Internal Journal of

Computer Applications
[11]Jorge J. Gomez-Sanz, Ruben Fuentes-Fern´andez, Juan
Pav´on(2012), “ Understanding Agent Oriented Software Engineering
Methodologies”, IEEE
[12]Mark F. Wood, Scott A. DeLoach(2001) “An Overview of the

Multiagent Systems Engineering Methodology”, First International

Workshop on Agent-Oriented Software Engineering
[13]Nguyen C, Perini A, Tonella P. (2011) “A Goal-Oriented Software
Testing Methodology Technical Report” ACM

0
5

10
15
20
25
30
35
40
45

1 2 3

Total Testing Score

Total Testing
Score

1: Acceptance Testing on Developer's System
2: Acceptance Testing on User's System
3: Retesting by User

Proc. of the Second Intl. Conf. on Advances in Electronics, Electrical and Computer Engineering -- EEC 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6935-2 doi:10.3850/ 978-981-07-6935-2_43

