

208

Trade Offs In Migrating From Legacy
System To Service Oriented Architecture

Hunney Salhotra Balraj Singh Amandeep Kaur

Abstract -- Service Oriented Software Engineering is the
most promising engineering paradigm in industry now-a-
days. It focuses on development of software systems based on
reusable services that can distributed in nature. Migrating
legacy system developed in any language to Service Oriented
Paradigm is in trend now. Enterprises have more powerful
software with lesser cost. There has always been a difference
between the methods of migration proposed by academia
and as used in industry. Academia suggests that while
migration, legacy system should be reverse engineered. But
in practice, legacy systems are forward engineered. The
paper tries to fill the agreement gap between Industry and
Academia upon the migration of legacy system to SOA
system. In this research, Memory and CPU utilization of
various events of legacy system, Forward Engineered SOA
system, and Backward Engineered SOA system were
recorded. Recommendation is given that migration
technique should be chosen by keeping these trade-offs in
consideration. This research paper focuses on bridging the
gap between Industrial Practices and Academia Theory.

Keywords –service; service oriented software engineering;
migration; legacy to SOA;

I. Introduction
Service-oriented architecture is a paradigm for creating,
realization and maintenance of business processes

Hunney Salhotra

Department of Computer Science and Engineering,
Lovely Professional University
India
salhun86@hotmail.com

Balraj Singh

Department of Computer Science and Engineering,
Lovely Professional University
India
balraj.13075@lpu.co.in

Amandeep Kaur

Department of Computer Science and Engineering,
Lovely Professional University
India
aman_heyer@yahoo.co.in

entities called services try to implement distributed and
heterogeneous software systems. With acceptance of
service-oriented architecture as a new approach in
software engineering as a model for the production of
software systems, and in order to practical use of SOA –

distributing in big heterogeneous systems. Service-
Oriented Architecture (SOA) as one of the most
prominent architectures introduced in the past decade, by
creating layered architecture and the introduction of basic
similar to other existing methods – some SOA specific
methodologies are required for system development with
emphasis on service-oriented approach [1].

A. Service Oriented Architecture
Service-oriented architecture provides a layered
architecture trying to create architecture with different
abstraction levels. It separates various concepts in each
system software development such as issues related to
user interfaces, synchronization, services and resources.
SOA resource layer consists of all information sources.
Sources may include the previous programs, databases,
systems management and even people and knowledge in
the organization. The higher layer creates an integrated
and extensible infrastructure for interaction between the
services by building independent services with well-
defined interfaces. Due to the importance of
synchronization in distributed systems and the separation
of collaboration from computational problems, a separate
layer for synchronization is considered in SOA.
Web services are a set of stateless, autonomous, coarse
grained, platform-independent and loosely-coupled
software components, which are implemented under a
specific namespace. Although some characteristics of the
SOA paradigm, such as support of loosely coupled
services and interoperability, make the service enabling of
legacy systems look to be straightforward, it constitutes a
key challenge of service design. One of the key features
of the service oriented paradigm is to facilitate reuse of
business functions provided by legacy systems.

Proc. of the Second Intl. Conf. on Advances in Electronics, Electrical and Computer Engineering -- EEC 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6935-2 doi:10.3850/ 978-981-07-6935-2_42

209

The SOA migration framework addresses the question of
“what does the migration of legacy systems to SOA

entail”. SOA migration is defined as a modernization

technique that moves the system to a new platform while
retaining the original system data and functionality. The
main motivation behind the modernization of legacy
systems to SOA is to achieve the advantages offered by
SOA and still reuse the embedded functionalities in the
legacy systems [2].

B. Reengineering from Legacy system

to SOA
Any type of reengineering can be comprised of three
basic reengineering processes [3]:

 Analysis of an existing system,

 Logical transformation, and

 Development of a new system.

C. Service Extraction Process
 Consolidated legacy-to-SOA migration

approach: A consolidated legacy-to-SOA
migration approach, referred as “ServiciFi

method”, is used. The serviciFi method is
developed using method engineering and concept
slicing. The serviciFi method combines the
migration feasibility and technology support
required for the legacy-to-SOA migration.

 Candidate service identification: The initial two
steps of the SEP: patterns identification and
service identification represent the candidate
service identification phase of the research.
Candidate service identification is a challenging
task, so a step-wise identification approach is
designed.

 Service Extraction: Concept slicing technique is
exploited to extract the complete code
representing the identified functionality. The
concept slicing technique has been successfully
used to extract source code for software
maintenance.

D. SOAMIG

 The SOAMIG-Project1 aims at providing a general
transformation-based migration process model with an
emphasis on code and architecture migration. Its phases
are described below [4]:

Fig 1: The SOAMIG Phases

 Preparation: Starting point of every migration
project is legacy code which has to be prepared
and standardized in the Pre-Renovation
discipline by various reengineering activities to
alleviate conversion activities. The project
infrastructure including defining project goals
and work packages or managing resources is set
up in the Project Setup discipline

 Conceptualization: A broad automatization
seems possible by eligible migration factories. A
central activity in migration projects is assessing
feasibility of migration and applicability of
provided tool sets during Technical Feasibility.

 Migration: Migrating the entire system is applied
after setting up a general migration strategy and
tool support. In the Migration phase, all
SOAMIG core disciplines are performed
iteratively in different intensities, resulting in a
migrated system in production.

 Transition: Code migration usually leads to
hardly maintainable code, which requires
additional reengineering.

With the increasing demand of SOA based application,
industry and academia are in continuous debate on the
most efficient way of migrating any legacy system to
SOA. Academia suggests Reverse Engineering; whereas
Industry implements Forward Engineering. There is a gap
between the agreements on migration in both. So, the
thesis will try to find the best way of migrating from
legacy system to SOA and thus finding various trade-offs
in resource utilization by SOA system.

II. Implementation
A system, “Book Store Management System” was created

in C#.Net and SQL Server at its back end. Book Store
Management System is an Inventory Control Module of
any book shop. For the research, three similar Book Store
Management Systems were created but by following three

Proc. of the Second Intl. Conf. on Advances in Electronics, Electrical and Computer Engineering -- EEC 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6935-2 doi:10.3850/ 978-981-07-6935-2_42

210

different paradigms. All the logics and programming
variable were kept constant for the consistency in the
result.

Fig 2: Book Store Management System

Legacy Book Store Management System was created
using traditional approach without any services. Reverse
Engineered Book Store Management System was created
using SOA based approach. Forward Engineered Book
Store Management System was created using SOA based
approach upon legacy system. Not all functionalities are
implemented using services.
Using Windows Task Manager, it’s CPU and Memory

utilizations for various events were recorded.

Fig 3: Task Manager for recoding Parameter

Various events in Book Store Management System are:

 Application Start-up (Considered only in
memory recording)

 Form load Manage Inventory

 Manage Inventory Save

 Manage Inventory Update

 Manage Inventory Delete

 Manage Inventory Search

 Manage Inventory Close

 Form load View Inventory

 View Inventory Close

 Form Load To Order

 To Order Go

 To Order Close

 Form load Search

 Search Go

 Search Close
Once the data for legacy Book store management were
recorded, the system was reverse engineered and a SOA
based Reverse Engineered Book Store Management
System was developed whose core functionality, i.e.,
inventory management of book store was based on a
service published and used using Visual Studio. All the
search functionality and other database features were also
based on Service architecture. It is to be noted that all
variables and program logic were kept constant. Just the
core part was implemented using service, rest all logic
remains same.
Finally, the legacy system was re-engineered, but this
time forward engineering was done on it. In this SOA
Based Forward Engineered Book Store Management
System, only the core part of application, i.e., the
inventory management module that adds, deletes, updates
books from database is based on service architecture. Rest
all other searching functionality, To Order functions, Data
Viewing functions are based on traditional non service
architecture. This is because it is seen that when an
application is forward engineered, some of its features
tend to have the traditional behaviour while the core part
is enhanced. To this property of forward engineering is
simulated by not completely implementing service
architecture in SOA Based Forward Engineered Book

Store Management System.

Proc. of the Second Intl. Conf. on Advances in Electronics, Electrical and Computer Engineering -- EEC 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6935-2 doi:10.3850/ 978-981-07-6935-2_42

211

III. Result and Discussions

A. Collective CPU Utilization analysis
for three applications.

Table 1: Collective data for CPU Utilization for Legacy,
Forward Engineered, Backward Engineered Book Store

Management System

Sr.
No

Applicatio
n Events

Legacy
System

Forward
Engineere
d System

Reverse
Engineere
d System

1
Form load
Manage
Inventory

1.3 1.8 0.9

2
Manage
Inventory
Save

0.2 1.1 0.9

3
Manage
Inventory
Update

0.2 0.5 0.7

4
Manage
Inventory
Delete

0 0.2 0.4

5
Manage
Inventory
Search

0.3 0.2 0.2

6
Manage
Inventory
Close

0.3 0.5 0.5

7
Form load
View
Inventory

1.4 1.3 1.5

8
View
Inventory
Close

0.2 0.2 0.2

9
Form Load
To Order

0.6 0.2 0.5

10
To Order
Go

0.7 0.2 0.8

11
To Order
Close

0.2 0.3 0.3

12
Form load
Search

0.3 0.8 0.8

13 Search Go 0.6 0.5 0.4
14 Search 0.5 0.3 0.3

Close

Fig 4: Collective data for CPU Utilization for Legacy, Forward
Engineered, Backward Engineered Book Store Management

System

From the above diagram, The CPU Utilization:

 Is least in Legacy Book Store Management
System because all the operations are locally
present and no overhead CPU utilization is done
in calling, connection building, message passing
to services

 Is more in SOA Based Forward Engineered
Book Store Management System since some
service architecture is used and some overhead
CPU utilization is done in calling, connection
building, message passing to services

 Is most in SOA Based Reverse Engineered Book
Store Management System since whole
application is based service architecture is used
and mostly overhead CPU utilization is done in
calling, connection building, message passing to
services

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 3 5 7 9 11 13

Legacy
System

Forward
Engineered
System

Reverse
Engineered
System

Proc. of the Second Intl. Conf. on Advances in Electronics, Electrical and Computer Engineering -- EEC 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6935-2 doi:10.3850/ 978-981-07-6935-2_42

212

B. Collective Memory utilization for
three applications.

Table 2: Collective data for Memory Utilization for Legacy, Forward
Engineered, Backward Engineered Book Store Management System

Sr.
No

Applicatio
n Events

Legacy
System

Forward
Engineere
d System

Reverse
Engineere
d System

1
Application
Start-up 3.1 4 3

2

Form load
Manage
Inventory 3.4 4.6 3.3

3

Manage
Inventory
Save 4.7 5.2 4.5

4

Manage
Inventory
Update 4.8 4.7 4.6

5

Manage
Inventory
Delete 4.8 4.7 4.6

6

Manage
Inventory
Search 4.6 4.5 4.5

7

Manage
Inventory
Close 4.8 4.9 4.8

8

Form load
View
Inventory 6.4 5.2 5.1

9

View
Inventory
Close 4.9 4.9 4.9

10
Form Load
To Order 6.5 6.8 5

11
To Order
Go 6.9 6.9 6.5

12
To Order
Close 5 4.9 4.8

13
Form load
Search 6.5 6.4 6.3

14 Search Go 7 6.7 6

15
Search
Close 4.9 4.8 4.8

Fig 5: Collective data for Memory Utilization for Legacy,
Forward Engineered, Backward Engineered Book Store

Management System

From the above diagram, The Memory Utilization:

 Is most in Legacy Book Store Management
System because whole application is loaded into
the memory once it is executed

 Is more in SOA Based Forward Engineered
Book Store Management System because only
those parts that are not service oriented are
loaded into the memory and rest of the part is
loaded when the service is called or required

 Is least in SOA Based Reverse Engineered Book
Store Management System because very less part
of the application gets loaded into the memory as
most of the part of the application is based on
service architecture. So, services are loaded to
and executed from memory only when required
or called.

So, from the above points it is clear that there is a trade-
off between Memory and CPU utilization among the three
applications. So, it is recommended that, correct type of
application should be chosen according to the hardware
platform. If we are migrating from Legacy to SOA bases
application then we must consider following points:

0

1

2

3

4

5

6

7

8

1 3 5 7 9 11 13 15

Legacy
System

Forward
Engineered
System

Reverse
Engineered
System

Proc. of the Second Intl. Conf. on Advances in Electronics, Electrical and Computer Engineering -- EEC 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6935-2 doi:10.3850/ 978-981-07-6935-2_42

213

 If system has sufficient amount of memory, and
low CPU power, then the decision of migrations
should be reconsidered. Because more and more
the application will become service oriented,
more CPU utilization will be done.

 If system has balanced amount of CPU power
and memory, then SOA based Forward
Engineering of Legacy System can be
considered. Because Forward Engineering of
Legacy System doesn’t completely make it SOA

based and an organization can get more out of it.

 If the system has more CPU power but less
memory, then SOA Based Reverse Engineering
of Legacy System can be considered. Because
Reverse Engineering of Legacy System makes it
SOA based completely and not whole
application is loaded in the memory at start-up
and services are loaded only when they are
required. But additional CPU overheard is done
due to calling, connection building, and message
passing to services.

IV. Conclusion and Future Scope
The thesis tries to fill the agreement gap between Industry
and Academia upon the migration of legacy system to
SOA system. Academia proposes that legacy system
should be reverse engineered whereas Industry Forward
Engineer the legacy system while migrating to SOA
system. In this research, Memory and CPU utilization of
various events of legacy system, Forward Engineered
SOA system, and Backward Engineered SOA system
were recorded. It was found that CPU and Memory have a
trade-off in all three applications. It has been analysed
that:

1. CPU utilization is least and Memory utilization
is most in legacy system.

2. CPU utilization is more and Memory utilization
is more in Forward Engineered SOA system.

3. CPU utilization is most and Memory utilization
is least in Backward Engineered SOA system.

Recommendation is given that migration technique should
be chosen by keeping these trade-offs in consideration.
The application used as legacy and migrated to SOA had
only one module. And thus only one service was taken
into consideration. In future, more complex applications
with more modules can be migrated involving more

services in SOA system and their CPU-Memory trade-off
will further enhancement in this research.

V. References
[1]http://en.wikipedia.org/wiki/Service-oriented_software_engineering
[2]Kamari Saeid (2012) “A Conceptual Overview of Service Oriented
Software Systems Development”, Journal of Basic and Applied Scientific

Research
[3]Khadka Ravi (2012) “Service Identification Strategies in Legacy-to-
SOA Migration”, Springer
[4]C. Zillaman, A. Winter (2011) “The SOAMIG Process Model in

Industrial Applications”, ACM
[5]Balagurusamy, E. (2008) Programming in C#, Tata McGraw Hill,
New Delhi
[6]Bohra Rashmi, Rathore V.S. (2011) “An Evaluation of Services

Development in e-Commerce Migrating to SOA”, International Journal
of Soft Computing and Engineering(IJSCE)
[7]Chapin Ned (2010) “Software Characteristics of SOA”, ACM
[8]E. Di Nitto, D. Meilander, S. Gorlatch, A. Metzger, H. Psaier, S.
Dustdar, M. Razavian, D.A. Tamburri, P. Lago (2012), “Research

Challenges on Engineering Service-Oriented Applications”, IEEE
[9]Elmasari, R.; Somayajulu D.V.L.N.; Navathe S.B.; Gupta S.K. (2008)
Fundamentals to Database Systems, Pearson Education, Delhi
[10]Jerker Delsing, Fredrik Rosenqvist, Oscar Carlsson, Armando W.
Colombo, Thomas Bangemann (2012) “Migration of Industrial Process

Control Systems into Service Oriented Architecture”, 2012
[11]Karbunen Harri, Jantti Marko, Anne Eerola, (2012) “Service
Oriented Software Engineering (SOSE) Framework”, IEEE.
[12]Oldevik J. , Olsen G.K. (2011) “Model Driven Migration of

Scientific Legacy Systems to Service Oriented Architecture”, Joint
Proceedings of MDSM 2011 and SQM 2011
[13]Razavian Marayam, Lago Patricia (2011) “A Survey of SOA

Migration in Industry” , Springer – Verlag Berlin Heidelberg 2011
[14]http://www.oracle.com/us/technologies/soa/soa-suite-066466.html
[15]www.microsoft.com/sqlserver/en/us/default.aspx
[16]www.homeandlearn.co.uk/csharp/csharp.html

Proc. of the Second Intl. Conf. on Advances in Electronics, Electrical and Computer Engineering -- EEC 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6935-2 doi:10.3850/ 978-981-07-6935-2_42

