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Voltage Stability Analysis of Radial Distribution 
Networks for Loads of Composite Type using Shunt 

Capacitor at Optimal Position 

 [K Dasgupta, S Banerjee C K Chanda] 
 

Abstract— The paper presents voltage stability analysis of radial 
distribution networks for composite type of loads without and with 
considering shunt capacitor. A new voltage stability index is 
proposed for identifying the node, which is most sensitive to voltage 
collapse. The effectiveness of the proposed method without and with 
considering shunt capacitor is demonstrated through an 12.66 kV 
radial distribution networks consisting of 33 nodes. 

Keywords— Voltage stability index; radial distribution 
system; shunt capacitor; voltage collapse; weakest node. 

I. INTRODUCTION 
Voltage collapse may occur in a power system due to lost in 
voltage stability in the system. Voltage collapse is the 
phenomenon of voltage instability that can appear in a 
transmission or distribution system operating under the 
heaviest loading conditions, in which the voltage decreases 
monotonically leading the system to be blackout. While in 
normal operating conditions, small loads increase causes a 
small voltage drop but if the entire network or a particular 
node is over a certain critical load level; further loads increase 
causes a fast decrease of the voltage which suddenly leads the 
system to the collapse. Therefore voltage stability analysis is 
important in order to identify critical nodes in a power system 
i.e. nodes which are closed to their voltage stability limits and 
thus enable certain measures to be taken by the control 
engineer in order to avoid any incidence of voltage collapse. 

Voltage stability [1] may be explained as the ability of a 
power system to maintain voltage at all the nodes of the 
system so that with the increase of load, load power will 
increase and both the power and voltage are controllable. The 
problem of voltage stability [1] has been defined as inability of 
the power system to provide the reactive power [2] or non-
uniform consumption of reactive power by the system itself.  
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Therefore, voltage stability is a major concern in planning 
and assessment of security of large power systems in 
contingency situation, specially in developing countries 
because of non-uniform growth of load demand and lacuna in 
the reactive power management side [3]. The loads generally 
play a key role in voltage stability analysis and therefore the 
voltage. 

  stability is known as load stability. Literature survey 
shows that a major work has been done on the voltage stability 
analysis of transmission systems, but so far the researchers 
have paid very little attention on the voltage stability analysis 
for a radial distribution network [4-12] in power system. 

A radial distribution system consists of root node, main line, 
lateral line, sub lateral line and minor line with some uniform 
and non-uniform tapings. Radial distribution  system having a 
high resistance to reactance ratio, which causes a high power 
loss whereas the transmission system having a high reactance 
to resistance ratio. So, the conventional load flow methods like 
Newton Raphson and fast decoupled method cannot be 
effectively used for the load flow analysis of radial 
distribution systems. 
All the 11 KV rural distribution feeders are radial in nature 
and longitudinal in behavior due to vastness of our country 
like India. The voltages at the distant end of many such radial 
feeders are very low which demands high voltage regulation. 
   In this paper, a new voltage stability index for all the nodes 
is proposed for radial distribution networks considering 
composite types of loads without and with considering shunt 
capacitors. It is shown that the node, at which the value of 
voltage stability index is maximum, is more sensitive to 
voltage collapse.   

 

II. BASIC THEORY 
A distribution networks consists of N number of nodes. 

Normally, a number of branches are series connected to form a 
radial feeder in low voltage distribution system. Let any 
branch line is bjj where i and (i+1) are respectively two nodes 
of the branch and node i is sending end node [sending end 

voltage    iiV  ] and node (i+1) is receiving end node 

[voltage,    11  iiV  ]. Therefore, power flow 
direction is from node i to node (i+1). The load flow from 

node (i+1) is {    11  ijQiP }. The impedance of the 
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branch bjj is    ijXiR  . If line shunt admittances are 

neglected, the current flowing through the line is given by, 

 
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The complex power is written as 
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From (1) and (2) 
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Equating real and imaginary part of (4), we get 
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and 
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From (5) and (6), we get 
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The equation (7) is quadratic in nature and to have real roots, 
the discriminate must be greater than or equal to zero.  
From (7), we get 
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Generally in radial distribution system, the voltage angle is 
negligibly small. So,      01  ii  .Hence, 
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Here  
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14
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  is termed as Local Voltage 

Stability Indicator (VSI) and to maintain stability, the 
condition is VSI 1. If the value of VSI exceeds unity, then 
the corresponding distribution line is very much unstable. So 
for safer operation of the system, the Local Voltage Stability 
Indicator (VSI) should be less than unity. 
 
Hence 

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III. LOAD MODELING 

For the purpose of loading status of all branches of radial 
distribution networks, composite load modeling is 
considered. The real and reactive power loads of node „i‟ is 
given as:  

        2

3210 iVciVcciPLiPL                (11) 

         2

3210 iVdiVddiQLiQL             (12) 

 

Here  ,, 11 dc   ,, 22 dc  and  33 ,dc  are the 

compositions of constant power (CP), constant current (CI) 
and constant impedance (CZ) loads respectively. Now, for 

constant power load ,111  dc  ,03322  dcdc  

for constant current load ,122  dc  

,03311  dcdc  and  for constant impedance load  

,133  dc   02211  dcdc . Here, for composite 

load, a composition of 40%   of constant power 

 ,4.011  dc  30% of constant current  3.022  dc  

and 30% of constant impedance  3.033  dc  loads are 

also considered. 
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IV. RESULT AND DISCUSSIONS 

The effectiveness of the proposed VSI is tested on 12.66 kV 
radial distribution systems consisting of 33 nodes. The single 
line diagram of the 33-node network is shown in Fig. 1 and its 
data are given in Appendix.  
 

 
Figure 1:Single line diagram  of a main feeder. 
 
    The voltage stability index is evaluated using equation (10) 
for composite type of load. Then the voltage stability index of 
all nodes of the network under nominal loading condition are 
shown in Fig. 2 and the investigation reveals that the value of 
the voltage stability index is maximum at node 6. Thus node 6 
is considered to be the weakest node of the network.   
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Figure 2: Voltage stability indicator of all branches of 33 node network for 

composite type of load under nominal loading condition. 
 
Now, active and reactive loads of all the nodes are increased 

i.e.,  iPLiPL o.)({   and  iQLiQL o.)(   for 

NBi .,....................4,3,2  and  is increased from zero 

to a critical value where voltage collapses.}. Then the voltage 
stability index of all nodes of the network under critical 
loading condition are shown in Fig. 3 and the investigation 
also reveals that the value of the voltage stability index is 
maximum at node 6. Thus node 6 is considered to be the 
weakest node of the network.   
Fig. 4 shows the plot of voltage stability index Vs. load 

multiplier factor    of the weakest node (node 6) of 33-node 

network under critical loading condition. 
Fig. 5 shows the plot of voltage magnitude of node 18 Vs. load 

multiplier factor    under critical loading condition. 
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Figure 3: Voltage stability indicator of all branches of 33 node network for 

composite type of load under critical loading condition. 
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Figure 4: Voltage stability index Vs. load multiplier factor    of the 

weakest node (node 6) of 33-node network under critical loading 
condition without capacitor. 
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Figure 5: Voltage magnitude Vs. load multiplier factor    of the weakest 

node (node 18) of 33-node network under critical loading condition 
without capacitor.  

 
Now a 400 kVAr shunt capacitor bank is inserted at node 30. 
Then, active and reactive loads of all the nodes are increased 
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{i.e.,  iPLiPL o.)(   and  iQLiQL o.)(   for 

33.,....................4,3,2i  and  is increased from zero to 

a critical value where voltage collapses.}. When the load of all 
nodes is successively increased, the power flow algorithm 
successfully converged for a load multiplier factor of up to 
4.90608 (for composite load). This point is considered to be 
the critical loading point beyond which a small increment of 
load causes the voltage collapse.  
Fig. 6 shows the plot of voltage stability index Vs. load 

multiplier factor    of the weakest node (node 6) with 

capacitor at optimal location of 33-node network for 
composite load under critical loading condition.  
Fig. 7 shows the plot of voltage magnitude of node 18 Vs. load 

multiplier factor    with capacitor at optimal location of 33-

node network for composite load under critical loading 
condition. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Load multiplier factor

V
o
lt
a
g
e
 s

ta
b
ili

ty
 i
n
d
e
x
 o

f 
n
o
d
e
 6

 w
it
h
 c

a
p
a
c
it
o
r

 

Figure 6: Voltage stability index Vs. load multiplier factor    of the 

weakest node (node 6) of 33-node network under critical loading 
condition with capacitor. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Load multiplier factor

V
o
lt
a
g
e
 m

a
g
n
it
u
d
e
 o

f 
n
o
d
e
 1

8
 w

it
h
 c

a
p
a
c
it
o
r

 

Figure 7: Voltage magnitude of node 18 Vs. load multiplier factor    of 

33-node network under critical loading condition with capacitor. 
 

Fig 8 shows the comparison of voltage stability index of node 
6 without and with shunt capacitor under critical loading 
condition. 
Fig 9 shows the comparison of voltage magnitude of node 18 
without and with shunt capacitor under critical loading 
condition. 
From Figs. 8 and 9, it is seen that with the insertion of shunt 
capacitor at node 30, load capability limit of the feeder has 
increased.   
From Figs 8 and 9, it is also seen that the VSI and voltage 
magnitude has improved after inserting shunt capacitor at node 
30.  
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Figure 8: Comparison of voltage stability index of node 6 without and with 

shunt capacitor under critical loading condition. 
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Figure 9: Comparison of voltage magnitude of node 18 without and with shunt 

capacitor under critical loading condition. 
 

V. CONCLUSIONS 

In this paper, voltage stability of radial distribution network 
without and with considering shunt capacitor has been studied. 
A voltage stability index of radial distribution network has 
been proposed. Proposed voltage stability index is capable of 
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identifying weakest node of the feeder. Effectiveness of the 
proposed technique has been demonstrated through an 
example. 
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Table I: Line data and nominal load data of 33-node radial distribution 
network. 
Br. 
no. 
(jj) 

Sendin
g 

end 
node 
IS(jj) 

Receivi
ng 
end 
node 
IR(jj) 

Branch 
resistance 

(ohm) 

Branch 
reactance 

(ohm) 

Nominal load at 
Receiving end 

node 
PL0 

(kW) 
QL0 

(kVAr) 
1 1 2 0.0922 0.0477 100.0  60.0 
2 2 3 0.4930 0.2511 90.0   40.0 
3 3 4 0.3660 0.1840 120 80 

4 4 5 0.3811 0.1941 60 30 

5 5 6 0.8190 0.7000 60 20 

6 6 7 0.1872 0.6188 200 100 

7 7 8 0.7114   0.2351 200 100 

8 8 9 1.0300   0.7400 60 20 

9 9 10 1.0400   0.7400 60 20 

10 10 11 0.1966   0.0650 45 30 

11 11 12 0.3744   0.1238 60 35 

12 12 13 1.4680   1.1550 60 35 

13 13 14 0.5416   0.7129 120 80 

14 14 15 0.5910   0.5260 60 10 

15 15 16 0.7463   0.5450 60 20 

16 16 17 1.2890   1.7210 60 20 

17 17 18 0.7320   0.5740 90 40 

18 2 19 0.1640   0.1565 90 40 
19 19 20 1.5042   1.3554 90 40 
20 20 21 0.4095   0.4784 90 40 
21 21 22 0.7089   0.9373 90 40 

22 3 23 0.4512   0.3083 90 50 
23 23 24 0.8980   0.7091 420 200 
24 24 25 0.8960   0.7011 420 200 
25 6 26 0.2030   0.1034 60 25 
26 26 27 0.2842   0.1447 60 25 
27 27 28 1.0590   0.9337 60 20 
28 28 29 0.8042   0.7006 120 70 
29 29 30 0.5075   0.2585 200 600 
30 30 31 0.9744   0.9630 150 70 
31 31 32 0.3105   0.3619    210 100 
32 32 33 0.3410   0.5302 60 40 
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