

84

Automated Comparison Framework for
Regression Testing

Aastha Kaur, Student, M.Tech , Navdeep Singh,B.Tech

Abstract: To reduce the effort, testing cycle time &
% of human errors that can easily creep in while
comparing the results of Regression Test Suite, a
thought process was put into designing &
implementing an Automation Framework for the
purpose. A lot of work and research has already
being done for the Execution phase of Regression
Testing wherein two parallel sides – Test & Prod
are setup & Test Cases executed by firing the same
one after the another & results stored. A large
number of Regression Automation Tools are
available in market like, QTP, Selenium, WATIR
etc, to cover this up. Contrary to this very less
work is available & very less has been thought
about the Comparison phase wherein Test Results
thus generated have to be compared to produce a
summary report for QA Testers to analyze which
they can further categorize into Expected &
Unexpected Breaks & then reach out to
Development for investigation & thus complete the
end-to-end life cycle of Regression Testing. With
advent of IT and shift of focus toward Financial
Banks & Institutions, a need is felt to have some
faster & feasible way to compare records with high
volume. That is the starting point for this paper
under which an Automation Framework for
Comparison Phase of Regression Testing is built in
Perl, that could easily cover records of any volume.
Use of Industry Compliant Methodology, named
Best Match, made the framework even more
flexible for scenarios having duplicate records on
either of the two parallel sides. Best practice Data
Structures like Hash are being used in the
implementation that have fasten up the parsing &
key pattern filtering, hence lowering down the
overall comparison & summary generation time.
Use of programming language Perl has made the
framework platform or operating system
independent as the implementation code can easily
be run on any OS, like Unix, Sun, Windows.

Aastha Kaur
Lingayas University
India
aastha.kaur87@gmail.com

Navdeep Singh
Punjab Technical University
India
navdeep.vohra@gmail.com

Comparing results of Regression Test Suite is far
more complex than it seems. The below paper
aims toward designing and implementing a
framework that could simplify this complexity.

I. Introduction
 Regression Testing aims toward testing a piece
of code again and again to ensure that new piece
of code has not impacted the existing piece. As
per previous study4, this is an expensive process.
This testing is performed at various levels of
software development life cycle. Right from the
start a piece of code is delivered by a developer
till the time its go to production, a software tester
keeps on testing a code regressively and keep on
finding the breaks and get the code improved or
fixed. Regression Testing over the period has
evolved from being manual to automated. A
large number of regression testing automation
tools are available in market that a QA tester can
use for his/her purpose. A study of the same2

proves that these tools not only simplify the
execution process but also gives a huge gain in
the form of less effort, reduce testing cycle time
and ease of use8. Regression testing in an end-to-
end form consists of two basic sub processes 1)
Execution: The execution part of Regression
Testing consists of creating a Regression Test
Environment wherein test cases can be grouped
and executed to get the test results. Regression
Test Environment1 consists of two sides: a) Test
side: Test side consists of what all a software
code is available in production plus new code
that has been delivered by a developer. This is a
new piece of code that will be tested regressively
over different testing life cycle stages before it
goes into production b) Prod side: This side
consists what all a software code is available in
production. The need to have this side is to test
the new piece of code above the existing piece
and get the breaks discovered, analyzed and
fixed. A High Level Architectural Diagram
showing the two sides as explained above is as
below:

Proc. of the Second Intl. Conf. on Advances in Electronics, Electrical and Computer Engineering -- EEC 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6935-2 doi:10.3850/ 978-981-07-6935-2_18

85

Fig 1: Regression Testing Flow Diagram

Automation tools like QTP serves as a powerful
tool2 to cover all the above functions. Any tester
can get into QTP, pick up test cases for a release,
setup the Test & Prod Env, use the previous
results as baseline and rerun the test cases with
the same set of test data to get the next baseline
results. The results are in the form of breaks
which when analyzed helps to verify that new
piece of code has not impacted the existing code.
This gives way to next phase of Regression
Testing that is Comparison.

2) Comparison: Once the Execution Phase gets
over, the baseline results are compared to give
summary output of differences observed in the
columns values of Test and Prod side. Most
Regression Test Environments compare the
behavior of two program versions to find out if
there are any changes. Deviations in the program
behavior can be intended, such as bug fixes, or
unintended, such as regression faults3.
Testing Teams over the period of time have
found Comparison Activity far more complex
than it used to be earlier. Only rationale behind
this was the increase in volume of the records
generated from the Automated Regression tools.
Comparing a small volume of 2-3 records in
each of Test & Prod side is far more simpler and
straightforward when compared to a volume of

10-15K of records. Very less work has been done
or is available in market that could ease off this
complexity.

II. Comparison
Considerations

When comparing results of Regression Suites,
due consideration should be given to volume of
data put in for comparison. With advancements
coming in the IT industry and increase of client
base, the number of Test Records were bound to
increase. Manually comparing such a high client
base is far more difficult than said. Not only the
QA tester has to compare each and every column
value of test & prod side one by one but also has
to follow some special algorithms/methodologies
in case of duplicate records observed. All this
only adds to the total testing cycle time with
huge effort on the parts of QA testers plus high
chances of errors creeping in due to total manual
intervention involved. To ease off the manual
complexity, a thought process was put into
designing and implementation of an Automation
Framework that can easily compare Test Records
of any volume. Add to this, the Framework can
easily handle the duplicacy scenario. A
framework consists of a common code that

Proc. of the Second Intl. Conf. on Advances in Electronics, Electrical and Computer Engineering -- EEC 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6935-2 doi:10.3850/ 978-981-07-6935-2_18

86

provides solutions for several similar
applications for specific problem types.
Frameworks differ from software libraries,
among other things, in two ways: First, the flow
of control isn’t dictated by the caller, but by the

framework (inversion of control). Second, a user

can extend a framework by overriding
functionality or by implementing interfaces6.

Fig 2: High level Architecture Diagram of Automated Comparison Framework

As shown in Fig 2, the Automation Framework
will take as an input the Data Files from Test
and Prod side which will be passed over to core
Business Logic that will cover all processing
part. Business Logic will do processing in two
forms: a) Non-Duplicate records– It will parse
the records to get individual column values
which will be compared for equality and
differences recorded b) Duplicate records- It will
hand over the request to a Service Layer that
encapsulate the Best Match Methodology.

Service layer will return back the Best Pair to the
Business Logic which will compare the records
the same way as a non-duplicate record was
compared. Business logic also hits the Client DB
to get the Configuration Information like the
location from where the Test and Prod input files
will be picked up along with location where it
will record the differences. The output will be in
the form of BCP [Bulk Control Process] files
which can either be send over to QA testers over
e-mail for further analysis or can be saved in the

Proc. of the Second Intl. Conf. on Advances in Electronics, Electrical and Computer Engineering -- EEC 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6935-2 doi:10.3850/ 978-981-07-6935-2_18

87

database for future reference. Output is in the
form of BCP files which contain differences in
two forms: a) Expected– Synthetic Breaks which
are generally ignored during testing analysis. b)
Unexpected- Code Breaks that signify the
existing functionality getting impacted by the
new code. These are the one that need to be
analyzed & send over to development teams for
investigation and subsequent code fix. Check
points can be introduced to send over the files to
a QA tester over e-mail for analysis rather than
uploading onto the database.

III. Scientific
Validation

After doing Adequate study of what all
methodologies are available in market, Best
Match Methodology was picked up, that not only
eases off and simplify the Comparison of
duplicate records but also wins at par from other
available, in terms of its relevance to Real World
Scenarios. Consideration has been put into the
conversion of this methodology into an
algorithm and then to subsequent
implementation.

Algorithm BestMatchPair(Client Id,Test
Hash,Prod Hash)
Input Client Id: Id for which bash match needs
to be formed
Test Hash: Hash containing Test records for
ClientId
 Prod Hash: Hash containing Prod records for
ClientId
Output bestMatchHash: Output Hash
containing the best Match Pairs

begin bestMatchPair
1. Initialize
test_length,prod_length,test_array,prod_array,
big_length,small_length,ref_big_array,ref_small
_array
2. Initialize temp variables
i,j,k,m,best,locbest,temp,array1,
array2, len1, len2
3. Split Test Hash for Client Id to retrieve the
value part & store in test_array
/*Step1*/
4. Split Prod Hash for Client Id to retrieve the
value part & store in prod_array
5.
test_length=Length(test_array),prod_length=Len
gth(prod_array)
6. if(test_length greater than prod_length) then

7. Assign test_length to big_length,test_array to
ref_big_array
8. Assign prod_length to
small_length,prod_array to ref_small_array
9. else
10. Assign prod_length to big_length,prod_array
to ref_big_array
11. Assign test_length to small_length,test_array
to ref_small_array
12. Endif
13. for each temp i=0 covering big_length do
 /*Step2*/
14. Initialize best with -1 ,matchCounter
with 0 & locbest with 0
15. for each temp j=0 covering
small_length do
16. Pickup 0th record from ref_big_array &
ref_small_array & store in k & m respectively
17. Split k into array1,len1=Length(array1)
18. Split m into array2,len2=Length(array2)
19. for each temp z=0 covering len1 do
 /*Step3*/
20. if(array1[z] equal to array2[z]) then
21. Increment matchCounter by 1
22. end if
23. Iterate the loop through the entire length
z
24. end for
25. Assign matchCounter to temp
26. if(temp greater than best) then
27. Assign temp to best
28. Assign j to locbest
29. end if
30. Iterate the loop through the entire length
j
31. end for
32. Store locbest value in bestMatchHash
for key i
33. Iterate the loop through the entire length
i
34. end for
35. Return bestMatchHash for Client Id
end bestMatchPair

Fig 3: Best Match Algorithm

Our Best Match Algorithm, shown in Fig3 can
be applied to normal plus duplicate records but it
gains most when applied in case of duplicacy
scenario. Best Match Algorithm inputs 1) Client
Id: Id having duplicate records 2) Test Hash:
Hash having test values for Client Id 3) Prod
Hash: Hash having Prod values for Client Id.
The algorithm outputs the BestMatchHash thus
generated for Client Id.

Proc. of the Second Intl. Conf. on Advances in Electronics, Electrical and Computer Engineering -- EEC 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6935-2 doi:10.3850/ 978-981-07-6935-2_18

88

Step 1: Split the Test & Prod Hash into
individual array elements. (lines 6-8) compares
the test & prod length and takes the test array to
be a big array in case if test is greater than prod.
(lines 10-12) takes prod array to be big if prod is
greater than test.
Step 2: Iterate Big Array over Small (lines 13-
14) initializes a loop variable over the big array
length and initializes few temp variables. (line
15) iterates a loop variable over small array.
(lines 16-18) picks up the first record of big &
small array, splits it to form sub arrays so as to
store individual values in array cells.
Step 3: Finding the Best Match Pair (line 19)
iterates through the temp array having test &
prod values. (lines 20-22) compares the cell
values one by one from the two temp arrays that
signifies the test & prod value. Every time it
finds a match, it increments the Counter for that
ClientId. If the newly calculated matchCounter is
greater than base value, the same becomes the
new base value. This way for each record from
big array the whole small array is scan through to
calculate BestPair value .This is stored in a
BestMatchHash and returned by the algorithm as
an output as shown in (line 35).
This methodology at its very best simulates any
real time scenario where in a person needs to
find best pair among the 100 of Duplicate
Records available. Below is a sample Real Time
scenario

Real Time Example
Scenario: XYZ is a banking firm which deals
with portfolio, holdings, transaction and
performance data of its millions of customers.
Each client has nearly 10-15k of trading data on
a daily basis which needs to be compared and
consolidated to get the day end report for audit
purpose. The methodology that best suites this
scenario is Best Match.

Let ABC be a client that has 111 as transaction
id that has duplicate records M, N & P on the test
side that needs to be compared with the
corresponding record Q from Prod side. Best
Match Algorithm will start by parsing M, N, P &
Q record of 111 transaction id into individual
cell values of a data structure already chosen for
the purpose. A counter is then initiated and the
first record M of 111 transaction id is compared
with the record Q from opposite side. Let’s say
the Match counter gets the value of 5 that
signifies 5 matching cell values between M & Q.
Take this as the bestCount with M assumed to be

best pair of Q till point. The Algorithm will pick
up the next record N and calculate the best match
counter in the same way. Let this counter value
be 6 and represented as Count1. Algorithm will
compare bestCount and Count1 and will store
Count1 into bestCount with former greater than
the later. Now the best pair of Q gets changed to
N. This will continue till all the records are
parsed through and we get a final Best Pair. This
way of comparing ensures the 2 records get
compared in the best possible way and as per
Best Practice standards.

Formula Representation
Let T=T1(vaUvbUvc…Uvn) U
T2(vaUvbUvc…Uvn) U T3(vaUvbUvc…Uvn)

….. U Tn ((v1Uv2Uv3…Uvn)
 P=P1(vxUvyUvz…Uvn) U

P2(vxUvyUvz…Uvn) U P3(vxUvyUvz…Uvn)

…... U Pn(v1Uv2Uv3…Uvn)

Ti T = TVi TV = (vaUvbUvc…Uvn)
where i=0,1,2,3…n

Pi P = PVi PV = (vxUvyUvz…Uvn)

where i=0,1,2,3…n

TVi∩PVi= (vaUvbUvc…Uvn) ∩

(vxUvyUvz…Uvn) where i=0,1,2,3…n

BM1=va~vx {{ (∑va = ∑vx) > (∑vb=∑vx) >

(∑vn) }U { (∑vx=∑va) > (∑vy=∑va) > (∑vn) }}

BM2=vb~vz {{ (∑vb = ∑vz) > (∑vb=∑vy) >

(∑vn) }U { (∑vz=∑vb) > (∑vz=∑vc) > (∑vn) }}

BMi=BM1 U BM2 U …. BMn

Fig 4: Formula Representation for Best Match Algorithm

As shown in Fig 4, to find the best Match set T
& P each representing Test & Prod values are
first split into subsets Ti & Pi each containing
individual column values which are further
compared against each other in the form of TVi
& PVi. A Best Pair value is only decided when a
value set from Test side TVi matches with a
value set from Prod side PVi and the match
value is greater than all the other value sets from
Ti & Pi. This is repeated for all the set values
and a Best Match Hash BMi is formed. Each
subset of BMi represents a best match pair of
value set from set T & P.

Proc. of the Second Intl. Conf. on Advances in Electronics, Electrical and Computer Engineering -- EEC 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6935-2 doi:10.3850/ 978-981-07-6935-2_18

89

IV. Data Structure
Implementation of the methodology described
above requires a data structure that can best
serve its purpose. The data structure should be
Easy to Implement, Easy to Debug, Easy to
Understand, Flexible for any generic scenario.
Along with that it should be as per the best
practice industry standards. One such Data
Structure is Hash Structure. Hash Structure wins
from the other available structure like Arrays,
Vectors by allowing the record values to be
saved in the form of Key-Value Pair where key
is a unique among all the records and the value is
the remaining cell values5. Hashing when
combined with Best Match methodology
simplifies the processing to find the Best Match
Pair. Comparing cell values stored in Hash
structure is a lot simpler and industry compliant.
This simplicity further adds to the value that the
Best Match brings to the table. Combination of
both gives the Automation Framework huge
gains and helps to achieve the overall goal of
Comparison Automation in the best possible
way.

V. Framework
Implementati
on

Perl programming language was used for the
implementation of the Automation Framework,
architecture of which is explained above7. It
consists of 250 Lines of Code and is compatible
across different operating systems like Windows,
Unix/Linux.
Integrated Development Environment (IDE)
named Padre is used for the development work
of the Automation Framework. This framework
can easily be used across different
disciplines/fields of an IT industry with changes
required only in configuration files. The
framework not only reduces the human effort,
reduces the overall cycle time, reduces the % of
errors creeping in, almost no manual intervention
involved but also achieves the end-to-end
Regression Testing Automation. When seen in
IT terms, the comparison framework if used will
save a lot of dollar money that is the main goal
of financial banks across the globe especially
during the hard recession times or global turmoil.

Framework Output
Below is a sample output as generated by the
code:

Fig 5: Sample Output of Comparison Automated Framework

Proc. of the Second Intl. Conf. on Advances in Electronics, Electrical and Computer Engineering -- EEC 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6935-2 doi:10.3850/ 978-981-07-6935-2_18

90

Differences as displayed are categorized into 2
types: 1.Individual Column Value Differences
2.Extra Section Differences.

This framework can easily be enhanced for any
field or scenario. With move of time and with
inflow of new requirements, the design can
easily be extended & reused.

Acknowledgment
This research paper is made possible with due
help & guidance from colleagues & lecturers
from Lingayas University. No monetary help has
been sought for this purpose from anybody.
Difficulties faced while preparing the paper was
sorted out mutually among the 2 authors. The
journey through the paper was full of learning
that helped us uncover various hidden facts.
Many anonymous reviewers provided valuable
suggestions that helped in the implementation &
presentation of test summary results. We will
also like to thank our parents who stayed with us
during the course and kept on supporting till the

end. This couldn’t have been possible without
them.

References
[1] Hanna Remmel, Barbara Paech, Peter Bastian &
Christian Engwer,"System Testing a Scientific Framework
Using a Regression-Test Environment",IEEE CS,pp. 40-
41,2012
[2] B.Kitchenham,L.Pickard, and S.Pfleeger,"Case Studies
for Method and Tool Evaluation",IEEE
Software,vol.11,no.4,pp-52- 62,July 1995
[3] Hanna Remmel, Barbara Paech, Peter Bastian &
Christian Engwer,"System Testing a Scientific Framework
Using a Regression-Test Environment",IEEE CS,pp. 42,2012
[4] Mary Jean Harrold,"Reduce, Reuse, Recycle, Recover:
Techniques for Improved Regression Testing".IEEE
CS,,vOL-28,pp. 1,2009
[5] S . Elbaum, A.G. Malishevsky and G. Rothermel,"Test
Case Prioritization: A Family of Empirical Studies".IEEE
CS,vOL-28,pp. 2,2002
[6] Hanna Remmel, Barbara Paech, Peter Bastian &
Christian Engwer,"System Testing a Scientific Framework
Using a Regression-Test Environment",IEEE CS,pp. 39,2012
[7] Mark-Jason Dominus,"Perl:Not Just for Web
Programming",IEEE Software,Jan-Feb 1998
[8] Macario Polo, Pedro Reales, Mario Piattini, and
Christof Ebert,"Test Automation",IEEE Software,pp 84-
89,Jan-Feb201

Proc. of the Second Intl. Conf. on Advances in Electronics, Electrical and Computer Engineering -- EEC 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6935-2 doi:10.3850/ 978-981-07-6935-2_18

