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Figure 1.  Electromechanical positioning system 

 

Design of  an Electromechanical Positioning System 
with Sinusoidal Change of the Jerk 

 Mihaylo Y. Stoychitch 
 

Abstract—In this paper we consider design of an electromechanical 
positioning system with a controlled jerk. A system that is formed 
from a load and an actuating device is used as an object. For the 
proposed sinusoidal change of the jerk, the appropriate changes of 
the acceleration, velocity and displacement were found. The 
algorithm which ensures the motion of the object with prespecified 
jerk so that the requirements which are related to the maximum 
values of the acceleration, velocity and displacement are  satisfied, 
is also proposed. The feedforward and feedback controllers that 
are realized this algorithm are designed.  Furthermore the 
simulation of that system is performed, which is confirmed  the 
proposed theory. 

Keywords—positioning system, trajectory planning, feedback 
and feedforward design, controlled jerk 

I.  Introduction  
Positioning systems are often used in the industry as  

electromechanical drive or to drive of robots. The task of this 
system is to achieve adequate movement between two arbitrary 
points, from  a point A to a point B, where the system at the 
initial and the final points is at the idle state. In doing so, we 
assume that the acceleration and deceleration times are the 
same, or equivalently, the trajectory is symmetric with respect 
to the velocity. In order to design such a system it is necessary 
to solve several problems, such as: 
  trajectory planning: determining allowable trajectory and all 

parameters of motion  (jerk, acceleration, velocity, ...) for all 
degrees of freedom and for each actuating device, separately 

 controller design: designing feedback and/or feedforward 
controller that ensures realization of the desired trajectory for 
each actuating device, even in circumstances when 
disturbances (internal  and/or external) act on the object, and  
there exists an unmodeled  dynamic of  the object , and   

 other problems, such as: diagnostic, internal checks, 
communications, etc. 

Solutions of to above problems are generally reduced to  one 
actuator unit, on one axis or a degree of freedom.  

Motion of the object (plant) between two points  can typically 
be divided into three phases: acceleration, motion with constant 
speed, and deceleration. Traditionally, a trapezoidal (or 
triangular) speed profile has been mainly used. This means that 
acceleration of the object (for a time at )  is constant until  it  

reaches  the  maximum speed,  then  it  keeps  this  speed  (for  a   
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 time vt ), and it decelerates by a constant deceleration (also, for 

a time at ) so that the total time of the movement   is 

2 a vt t   .  

One of the main problems with  the trapezoidal speed profile 
is large changes of the jerk,  and consequently large inertial 
forces. Furthermore, that can induce large vibrations of 
mechanical parts of the system, which leads to a large (often 
unacceptable) the stationary error and  too long settling time. 

There exist several approaches to improve the performance 
of  these systems, which can be roughly split as: 
1. Trajectory smoothing or shaping: The result can be very 

good, but it can lead to a significant increase in execution 
time of the trajectory. This approach is considered in 
[2,3,7,8]. 

2. Feedforward control based on plant inversion: This approach 
gives good results only if  the plant model is well known, but 
with important disadvantage with respect to robustness of the 
system. Different examples of this approach can be found in  
papers [2,3,4].  

3.  Feedback control optimization: Since the feedback controller 
is an integral part of almost all positional systems, then its 
optimization leads  to decrease of the stationary errors and 
settling time, but at the same time may increase the overshoot 
and reduce the stability of the closed system. This approach is 
considered in [1,8,9]. 

In this paper we use an approach that in some way includes all 
of the above approaches.  In [10] such an approach is proposed, 
but for linear change of  the jerk.  

II. Trajectory Planning 

A. Mathematical model of the object  
We consider an electromechanical positioning system, Fig. 

1, where mass m  includes masses of all the moving parts (load 
and actuator).  In the initial time 0 0t  , we assume that the 

values of the jerk j , acceleration a , velocity v   and 

displacement r  are zero, i.e. ( ) ( )0 0j a  ( )0v ( )0 0r  . 

Force ( )F t  generated by the actuator must overcome the force 
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of inertia if ma  (of all the moving masses) and viscous 

friction force vf bv . The other  frictions  ( for example  

Columb  frictions )  are  neglected and their effect is modeled 
through disturbance ( )w t , so behavior of the system is 

described by the equation: 
bvmarbrmF   .   (1) 

After Laplace transformation (all the initial conditions are zero) 
we obtain the transfer function of the plant (object) ( )sGo  as 

( ) ( ) ( ) ( )
( )
( )sF

sR

bsms
sGsRbsmssF o 




2
2 1

.  (2) 

B. Smoothing the Trajectory 
In order to get little changes of acceleration  (trajectory 

smoothing) we assume that the jerk is changing as: 

 2

1

2
1 1

sin , 0,

0, [ , ],

sin ( ), [ , ]

T

T

J t t T

j t T t

J t t t t



 

 


 
  

  (3) 

where: aT t , 1 vt T t   and J  are the acceleration time, the 

time of  the start deceleration and the maximum value of the 
jerk respectively .  

     Acceleration ( ) aa t jdt C   obtains  from (3), as:  

( )  

( )( )

2
2

1

2
1 12

1 cos , 0,

0, [ , ],

1 cos , [ , ]

A
T

A
T

t t T

a t T t

t t t t



 

  


 
   

  (4) 

where /A JT   is the maximum  value of acceleration. The 
constant of integration aC  is determined from the initial 

conditions for every time interval.  

  In a similar way  we can get velocity   vv adt C   as:  

 

( ) ( )

2
2 4

12

2
1 12 4

sin , 0,

, [ , ]

sin , [ , ]

A AT
T

AT

A AT
T

t t t T

v t T t

t t t t t







 

  


 
    

,  (5) 

and  displacement rr vdt C   as: 

0

at atvt

jerk

acceleration

velocity

displacement

 
Figure 2.  Changing the jerk, acceleration, velocity and displacement at the time 
interval [0, ]  
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2
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2 2
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AT A AT
T

t t t T

r t T t T t

t T t t t t t t










   


  


         

. (6) 

The changes of the jerk, acceleration, velocity and 
displacement that are given in  (3), (4), (5) and (6) respectively, 
are shown in Fig. 2.   
From (4), (5), (6) it is easy to determine the maximum values of 
acceleration, velocity and displacement at the time interval 
[0, ]T , as: 

( ) ( )
2 3

2
,  ,  

2 4
T

T T
JT JT JT

a v r
  

 
 
 

   . (7) 

C. Trajectory planning –algorithm 
From a practical viewpoint, it is the best to give the 

maximum values of  jerk J , acceleration  A ,  velocity  V   and 
the total displacement  R  at the beginning of the trajectory 
planning. These values depend on the possibility of the actuator 
(force or torque), the application of the positioning system as 
well as  the possibility of the control system. Then it is 
necessary to determine the shortest time aT t  and vt  so that  

given limitations are not exceeded. In this sense, we give the 
following algorithm: 
1. The shortest time within which motion can be  performed is 

calculated from  (7) as:  

( )
3

3 22
2

R
T

J

JT
R r T 


     .  (8) 

2. Using this time, given jerk J and (7) we can calculate the 
maximum value of the acceleration maxa  as max /a JT  . 

Now we can test whether the acceleration bound A   
exceeds this value  maxa . If maxa A  we continue, but if  

maxa A  we recalculate T  as:   /T A J  . 

3. In the similar way we test whether the velocity bound is 
satisfied. The maximal velocity, from (7), is   

2
max / 2v JT  . Test maxv V . If this is true we can 

continue, but if it is false we recalculate T  as  

2 /V JT  . 
4. And finally we determine the time vt  as: 

,v

R vT
t

v


    (9) 

    where velocity  v  is determined as ( )maxmin ,v v V .  

III. Controller Design 
Configuration of the overall system as in Fig. 3 is proposed, 
where ,r y and w  are denoted as reference, output and an 

immeasurable disturbance, respectively. The controller of the 
system includes both,  the feedback controller ( )C s  and feed-

forward controller ( )FC s . The output of the overall system 

( )y s  and the output error  ( )e s  (see Fig. 3)  are obtained as:  
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A. Design of Feedforward Controller 
We can see from (10) that the output error contains two 

components, one due to the reference r  (error 

( ) ( )1 / 1r o F oe G C G C   ) and the other due to the disturbance 

w   (error ( )/ 1w o oe G G C  ). In order for object ( )oG s  to 

track the reference r  asymptotically, the condition 0re   must 

be satisfied. This leads that the transfer function of feedforward 
controller ( )FC s  is given as  

( ) ( )
( )

( )
1 2 F

F o

u s
C s G s ms bs

r s
    .   (11) 

We got non-proper transfer functions, so the feedforward 
control ( )Fu t  can be realized using differentiation, see  [2,3], as 

( ) ( ) ( )

( ) ( )

( )

1
2

2

2

1

.

F F o

F

u C s r G s r t
s

ms bs b
r t m r t

ss

u t ma bv

 

  
    

 

 

 (12) 

 
This controller  is shown in Fig. 4.  
 
 
 
 
 

 

 
 

B. Design of feedback controller 
The main task of the feedback controller is to compensate 

some unknown disturbances and unmodeled behavior of the 
object. We request that the controller ( )C s  rejects all the step 

disturbances , so that  the output error tends to zero without 
oscillations. There are several different approaches for its 
design, [8,9]. In this paper we use a standard PID controller, so 
that the task now becomes to determine its parameters that 
ensure desired behavior of the overall system. The transfer 
function ( )C s  of the PID controller is 

( )
2 11

1 i d i
p d p

i i

TT s T s
C s k T s k

T s T s

   
    

 
,  (13) 

where the parameters ,p ik T  and dT  are proportional gain, 

integral and derivative time respectively. This transfer function, 
together with transfer function of the object (2) and using (10), 
gives the characteristic polynomial of the overall system as,   

( ) 3 2p d p p

i

k T b k k
s s s s

m m T m


     ,  (14) 

that can be written as  

( ) ( )( )2 22 n ns s s s       .   (15) 

The overall system has three poles, which  we can get as the 
solutions to the equation ( ) 0s  , so the poles are given as: 

1s    2
2,3 1n ns j      . In order for the output error 

to tend to the zero value without oscillations, both conditions 
1   and the pole 1s  being much further in the left half s-plane 

than the poles 2,3s  must be satisfied. We adopt 1   (the error 

( )e t tends to zero fastest), so the poles 2,3s  are 2,3 ns   .  

Using these values, (14) and (15), we finally get the parameters 
of the PID controller as: 

( )
( )22

2 ,  , nn
p n n i d

n p

m b
k m T T

k

  
  



 
    . (16) 

It is easy to prove that the system (see Fig. 3) with controller 

(13) and object (2) rejects all step disturbances, ( )
wo
s

w s  . 

Really, from the  (10)  follows, 

( ) ( )
( )

( )
1

1
o

w
o

G s
e s w s w s

CG m s
 

 
,   (17) 

where ( )s is given by (15). From the above equation we can 

calculate the stationary error ( )we  , due to the step disturbance 

with amplitude ow , as 

( ) ( ) ( )

( )

0

0

lim lim

1
lim 0,

w w wt s

o

s

e e t se s

ws
s

m s s

 



  

 


  (18) 

which confirms the above claim.   
 

IV. Simulation Results 
Simulation of the systems with the controllers (12) and 

(13),  the object (2) and in  the configuration  as in Fig, 3 is 
presented in Fig. 5. To carry out the simulation we use 
MATLAB/SIMULINK program which SIMULINK model is 

yr

w

e

Fu

uBu
( )C s

( )FC s

( )oG s

 
Figure 3.  Overall system with feedback ( )C s  and feedforward 

( )FC s  controller, object ( )oG s  and disturbance w  
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Figure 4.  Feedforward controller ( )FC s  
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shown in Fig.6. Values 2,3 3ns      are used as the poles  

2,3s , and   for  value of  the pole 1s  value 

1 7 21ns         is selected. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

V. Conclusions 
In this paper a system is designed that asymptotically follows a 
given reference and rejects all step disturbances. The reference 
is obtained  from the condition that the jerk is changed in a pre-
defined manner. As a controller the feedback and feedforward 
controllers are designed.  The feedback is a standard PID 
controller, and a controller that is obtained by plant inversion is 
used as feedforward controller.  An algorithm of planning 
trajectory which ensures that all bound values of the  jerk, 
acceleration, velocity and movement, is also given. The results 
of the simulation confirm the given theoretical considerations. 
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Figure 6. SIMULINK simulation model 
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