

157

Describing MPLS in an Open Flow enabled
Software Defined Networks

[Sandeep Singh, R.A. Khan]

Abstract
The main advantage for taking this proposed approach
is that it is a protocol and application agnostic. This will
not only work for MPLS, but also for other tunneling
protocols such as GRE, or L2TP. It will also work for
L2 protocols such as PBB, and applications such as
VPLS. Variants such as Nested LSPs are handled as
well in the same manner. Our goal is to make the switch
as protocol/application unaware as possible. Instead the
protocol and applications reside in the controller only.
Our Specification is Implementation independent (aka
Platform Independent), as a specification should be. At
the same time, we do leverage our extensive experience
with implementations to make sure that our
specification is not devised in vacuum. We have gone to
pains to make sure that the implementations will have
the flexibility to address their own specific constraints
and optimizations while working within the boundaries
of the specification.

Keywords: MPLS, Open Flow Switch, SDN.

Sandeep Singh, Research Scholar

Department of Information Technology
Babasaheb Bhimrao Ambedkar University, Lucknow.
INDIA
Drsandeep.gbu@gmail.com

Dr. R. A. Khan, Associate Professor

Department of Information Technology
Babasaheb Bhimrao Ambedkar University, Lucknow.
INDIA

I. INTRODUCTION

The current OF spec (v1) only defines the Flow
Table. The outgoing ports are represented by a bit
map of ports. This will not be enough to handle
certain functionality that is in common use. For
example IP Multicasting will require that a packet be
replicated to multiple outgoing VLANs. OFv1 cannot
handle that, because the FT can specify only one
outgoing VLAN. Other examples that will not work
include VPLS, Point-to-Multipoint Tunnels etc [1].

Today, all packet processing in the OF architecture is
specified in the FT. There is a “mention” of a Virtual

Port, but it is NOT defined anywhere. It is clear that
the term Virtual Port is being used as a Place Holder.
It is used in an “abstract” way to explain functionality
that in reality is not possible or even exists in OF
today. At Ericsson Research we are in the process of
defining and implementing MPLS capability for OF.
Therefore we don’t have the luxury of treating the

Virtual Port as a vague notion that will somehow
provide the functionality that is required by tunneling
(such as Nested Tunnels, VPLS, FRR etc).

The Virtual Port Table (VPT), as described earlier,
extends the architecture in a manner that is very
similar to the Flow Table. One can think of the VPT
as the FT for packets as they egress the box. It is a
symmetrical manifestation of the FT. Instead of
matching on various fields of the packet, a VPT is
indexed by the VP handle. This makes it easier to
implement and cheaper. It can be thought of as the
match on the VP index. The VP entry yields a set of
table actions very much like the FT entry does. These
actions are necessary to put the packet on the port.
One important capability of the VPT is the optional
chaining of VP entries. This allows for Hierarchical
Ports. For example a PW port will be chained to its
parent Tunnel port, which is chained to its parent

Proc. of the Intl. Conf. on Future Trends in Computing and Communication -- FTCC 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-7021-1 doi:10.3850/ 978-981-07-7021-1_62

158

physical port. Port chaining is a powerful concept
that can handle any complexity of encapsulations.
But it comes at a price. It is essentially a linked list
and that means that its processing takes O(n). This is
not acceptable for the typical cases of encapsulation.
The forwarding path processing is sacred for the
typical cases since it impacts the Line Rate.
Therefore we allow that a VP entry can short cut the
chain. It does so, by compressing the actions of all
the chain into one entry. For example a PW port can
push the VPN and Tunnel labels from one entry to
avoid chaining. Another example would be where a
Tunnel over a Link Bundle, keeps the cached active
or hashed constituent of the bundle in the Tunnel
entry [2].

II. BACKGROUND
A. Outgoing Port List:

The Port Table also contains the block of
Outgoing Port Lists (OPLs). The OPL is
used for replication, which is required in a
number of applications such as Multicast,
VPLS etc. Each replication will represented
by an entry, and all the entries of a particular
OPL will be contiguous. The last replication
entry in the OPL will have EOL (End Of
List) flag.

B. On Demand Virtual Ports:
Typically a VP will be setup preemptively,
either by configuration, or signaling.
However the spec does allow the creation of
VPs on the fly, or on demand.

C. Initial tunnel egress entry

(Tunnel VP):

The above Flow Table entry embodies the Tunnel
VP. Now if a Subscriber flow egresses the tunnel it
will get punted to the controller, which will install the
specific entry for it:

The more specific entry above is also a VP, in a
hierarchy of ports. In this case, the new on demand
VP is a Subscriber VP. The ability to increase the
match specificity allows us to de-capsulate and
forward in a single lookup cycle. As presented so far
Flow Table and Port Table have identical actions.
Some people have pushed back that certain new
actions required for encapsulation/decapsulation
(such as push/pop) should not be added to the Flow
Table. This is understandably so since this is
motivated by a desire to keep the new functionality
quarantined in the new entity described as the Port
Table. The case has also been made that we can defer
the action to the port table, so why add it to the flow
table. The author strongly disagrees with the above
argument. There is no technical reason for
quarantining the new actions required for tunneling to
the port table. On the other hand common
functionality in both tables helps with a number of
cases. For example, in the case of VPNs, an incoming
packet can immediately be tagged with its VPN label
in the flow table, thereby establishing the context for
the packet before it gets injected into the switch
fabric. In this manner the outgoing virtual port is the
common transport tunnel (transporting all PWs) as
opposed to a PW. Since a box can have 10s of
thousands of VPNs, this can lead to a big saving in
the Port Table size and complexity. It also simplifies
the management of entries by the controller. By
providing symmetry between the Flow Table and
Port Table, the architecture provides the necessary
flexibility to the switch implementer, without
introducing unique functionality for the two tables.

D. Ingress and Egress Flow
Tables: Finally the author is going to
make a very strong case that the Port Table
should really be the same as the Flow Table.
The port table that has been described so far

Proc. of the Intl. Conf. on Future Trends in Computing and Communication -- FTCC 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-7021-1 doi:10.3850/ 978-981-07-7021-1_62

159

is really an Economical Flow Table, since
the match is only on the outgoing port.
While this works for the use cases presented
so far, there are many important functions
that require that the Port Table should be the
same as the Flow Table. Examples include
Outbound ACLs, Lawful Intercept, Multi-
Stage Forwarding etc. Lawful intercept is an
example of functionality where the
Government requires that it be supported for
sale to carriers. Port Chaining will still be
required for Port Hierarchy, Multicast etc.
The spec should provider the flexibility for
an implementation to choose the level of
complexity in the Port Table depending
upon the market niche it is addressing. The
range would be from:

 No Port Table (support only L2 and unicast
L3/L4 functionality)

 Economical Port Table (adds tunneling and
L3 multicast)

 Egress Flow Table (adds Outbound ACLs,
LI, Multi-Stage Forwarding etc.)

III. MPLS OPERATIONS

An MPLS path have three types of nodes:

 Ingress: tunnel encapsulation
 Transit: label switching
 Egress: tunnel decapsulation

The actions required at these nodes are:

 Push: path ingress
 Swap: transit
 Pop: path egress
 PHP (Penultimate Hop Popping): used to

avoid Pop at the egress node
 Swap & Pushc
 Pop & Swap: nested path egress

Further functionality required at the nodes:

A. Forward to the MPLS next
hop : After performing the action on the
labeled packet, it is forwarded to the next
node in the MPLS path. This is done by re-
writing the destination MAC to the MAC
address of the next hop. Also the source

MAC of the packet is changed to the source
MAC of outgoing MPLS interface.

B. TTL handling: TTL handling
requires a number of operations: 1) Move
the TTL from the IP header to the MPLS
label at ingress node, 2) Decrement the label
TTL at the transit and egress nodes, 3) Move
the TTL from the label to the IP header at
the egress node, 4) If the incoming label
TTL is 1 at the transit or egress node then do
not forward the packet. Instead punt it to the
controller for further handling [3].

IV. MPLS ACTION

Once an MPLS flow has been matched, Table
Actions (TA) must be implemented, which will
provide the necessary MPLS functionality. The
MPLS label will need to be imposed, disposed or
swapped. These actions can be considered as a case
of generalized header re-write. The simplest case
would be that of a single labeled packet that requires
a swap. In that case, the swap would be nothing but a
label re-write. It does get trickier for the other cases.
For example, Push would require a label to be added.
The header is split into four levels, with a buffer
associated with each level:

This arrangement makes it easy to insert/remove and
manipulate header fields. For example, a TCP flow
coming into the MPLS cloud on an Ethernet port will
be seen as:

Proc. of the Intl. Conf. on Future Trends in Computing and Communication -- FTCC 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-7021-1 doi:10.3850/ 978-981-07-7021-1_62

160

Now tunnel encapsulation is done by simply adding
the MPLS label in the level 2 (Layer 2.5) buffer:

At the transit nodes the Shim buffer gets re-written.
Finally at the Egress node the tunnel encapsulation is
removed by making the Shim buffer null (as in figure
1). This generalized mechanism can be employed for
all tunnel encapsulations (GRE, IPinIP, L2TP, MPLS
Label Stacks, QinQ, PBB etc).

V. POP aka Tunnel Egress:

The logical action for POP, which is a tunnel egress
operation, is to remove the tunnel encapsulation and
then do a second lookup. This can be modeled in
OpenFlow by installing the tunnel egress matching
flow with an action of punting to the controller. For

MPLS that would be the label advertised by the
egress node. The first packet for a flow being
transported by the tunnel will be punted to the
controller. The controller will then install a more
specific flow entry that will include the inner header
along with the switching action.

 Actions:
 Pop (buffer shim, 4 bytes)
 Rewrite IP TTL from MPLS TTL
 Outgoing Port = As desired for the FEC

CONCLUSION

Our design philosophy is having a general scheme
which is independent of a given protocol and a set of
actions associated with the virtual port that are within
the scope of a lightweight Open Flow switch. It is
also found that this philosophy is having a great
flexibility, and scalability to handle future needs. The
virtual port (VP) falls into the general context of
ports on a switch. An Open Flow switch will
maintain a Port Table. Each port will be identified
with a handle that can be used to index the Port Table
(PT). Each entry on the port will contain the set of
actions required to put a packet out on the port, a
pointer to port data blocks and parent port (to support
a hierarchy of ports).

References

[1] Saurav Das, Unified Control Architecture for Packet
and Circuit Network Convergence, PhD Thesis,
Stanford University, June 2012.

[2] Saurav Das, Ali Reza Sharafat, Guru Parulkar, Nick
McKeown, MPLS with a Simple OPEN Control Plane,
invited talk at Packet Switching Symposium at
OFC/NFOEC'11, Los Angeles, March 2011.

[3] Ali Reza Sharafat, Saurav Das, Guru Parulkar, Nick
McKeown, MPLS-TE and MPLS VPNs with
OpenFlow, demonstration at SIGCOMM, Toronto,
August 2011.

Proc. of the Intl. Conf. on Future Trends in Computing and Communication -- FTCC 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-7021-1 doi:10.3850/ 978-981-07-7021-1_62

