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Abstract—A generalization of K-means clustering algorithms 

including cluster size variables and covariance variables are 
introduced. Moreover an on-line version of that is considered. A 
constrained clustering algorithm using these generalizations and 
the idea in the COP K-means is proposed. Performances of the 
proposed algorithms are compared using numerical examples.  
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I.  Introduction 
With the increasing use of classification methods in a 

variety of applications, data clustering techniques [1,2,3] are 
also focused upon by many researchers. Special attention is 
paid to semi-supervised classification [4,5] that handles a 
small number of labeled samples and a larger number of 
unlabeled samples. The setting of semi-supervised 
classification has invoked a class of new methods in clustering 
called constrained clustering [6].  Two well-known techniques 
are the COP K-means [7] and constrained mixture of 
distributions [8,9,10].  

We have studied a generalization of K-means that includes 
cluster size variables and covariance variables within clusters 
[11]. In this paper we proceed to propose algorithms of 
constrained clustering using the idea of COP K-means and the 
generalization of the basic K-means. An on-line version (cf. 
[2,3]) of the algorithms are also considered. The performances 
of these algorithms are shown by using an artificial data set 
that exhibits characteristics of the proposed algorithms and a 
real data set. 

The rest of this paper is organized as follows. Section 2 
provides preliminaries of the basic K-means and the COP K-
means using pairwise constraints together with the 
generalizations with the additional variables. Section 3 then is 
devoted to  the discussion of the proposed method of 
constrained clustering herein. Numerical examples are given 
in Section 4, where performances of different algorithms are 
compared. Finally, Section 5 concludes the paper. 
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II. Preliminary Consideration 
Notations are given first and then the basic K-means 

algorithm and its generalization is discussed.  The COP K-
means algorithm is also introduced.  

A. Notations 

Let pR  be the p-dimensional Euclidean space and the set 

of objects for clustering is denoted by 1{ , , }nX x x  . 

Each object x X   is a point of the Euclidean space.  The 
squared Euclidean distance is denoted by  

 2 2( , ) ( ) .j j

j

D x y x y x y   ‖ ‖         

 The squared Mahalanobis distance is also used, which is 
denoted by   

 1( , ; ) ( ) ( ).TD x y S x y S x y              

Clusters 1, , KG G  are subsets of a partition of X : 

 
1

, ( )
K

i i j
i

G X G G i j


     

The cluster center denoted by ( )iv G  for iG  is given by the 

centroid  (the center of gravity):  
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 where | |iG  is the number of elements in iG . ( )iv G  is also 

written as iv  for simplicity. 

B. K-means and a generalization 
The K-means algorithm has different origins, but the name 

is after [12]. The basic and simple algorithm of K-means is as 
follows. 

Step 1. Set initial clusters and calculate cluster centers as 
centroids of the clusters. 

Step 2. Allocate each object to the cluster of the nearest 
cluster centers.  

Proc. of the Intl. Conf. on  Future Trends in Computing and Communication -- FTCC 2013 
Copyright © Institute of Research Engineers and Doctors. All rights reserved. 

ISBN: 978-981-07-7021-1 doi:10.3850/ 978-981-07-7021-1_01 
 



2 

Step 3. If the clusters are convergent, stop. Else calculate 
new cluster centers as the centroids of the new members of the 
clusters. Go to Step 2. 

Here, the word ‘nearest’ means the shortest Euclidean 
distance.   

There are many variations of this algorithm. We consider a 
generalization that includes cluster size variables  

 1( , , )K     

and covariance variables  

 1( , , )KS S S   

within clusters. Clusterwise Mahalanobis distance 

( , ; )iD x y S  is thus used. Moreover a positive parameter   

is introduced. The algorithm is as follows.  

Step 1. Set initial clusters and calculate cluster centers as 
centroids (the center of gravity) of the clusters. Calculate the 
cluster size  and cluster covariances:  
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Step 2. Allocate each object x X   using 

 1argmin { ( , ; ) }i j K j j jx G i D x v S      

Step 3. If the clusters are convergent, stop. Else calculate 
new cluster centers as the centroids of the new members of the 
clusters. Calculate also the new cluster size and the covariance 
using the same formulas. Go to Step 2. 

 

C. K-means with pairwise  constraints 
Constrained clustering uses two sets {( , ')}ML x x  and 

{( , ')}CL y y  of pairs of objects.  They are is called the set 
of must-links and that of cannot-links, respectively. 
( , ')x x ML  means that ( ', )x x  has to be in the same 

cluster, while ( , ')y y CL  means that ( , ')y y  should not 
be in the same cluster.  

A simple algorithm related to K-means called the COP K-
means has been developed that takes pairwise constraints into 
account. 

Step 1. Perform K-means with an initial value. 

Step 2. If a certain constraint is broken, return FAILURE, 
else return SUCCESS. 

In this COP K-means algorithm, each object should be 
allocated to the cluster of the nearest center that does not break 
the constraints.  

III. Generalized On-Line K-Means 
and Constrained Clustering 

We propose an on-line version [2] of the generalized K-
means algorithm and constrained clustering using the idea of 
the COP K-means. The derivation of the generalized on-line 
algorithm is somewhat complicated and the details are omitted 
here. 

A. Generalized  On-line  K-means  
In an ordinary K-means algorithm, centroids are updated 

after all objects are reallocated. In contrast, they are updated 
after an object is reallocated in an on-line version of the K-
means algorithm [2]. More precisely, assume that an object 

kx  is moved from cluster iG  to jG using the same equation:   

1argmin { ( , ; ) }k l Kj lk l lDjx G x v S     . 

Then the two centroids ( )iv G  and ( )jv G  should be 

updated: 
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In the generalized K-means algorithm, the cluster size i  and 

j , as well as the covariance iS  and jS  should also be 

updated when kx  is moved from iG  to jG : 
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and 

 T T
i i k k j j k kB B x x B B x x      

Note that the Sherman-Morrison formula [13] for calculating 

the inverses of iS  and jS  are used.  

Hence the above calculations are repeated until convergence. 
The generalized algorithm in the former section (Section II.B) 
is called a batch algorithm in contrast to the on-line algorithm 
in this section. 

B. Constrained clustering 
Constrained clustering using the generalized K-means with 

the pairwise constraints is straightforward: we can just use the 
algorithm in Section II.C with the generalized K-means 
formulas.  On-line COP K-means with the generalized 
algorithm can also be developed without difficulty, as seen in 
the description of the COP K-means in the same section.  

IV. Numerical Examples 
We show two numerical examples.  First example uses an 

artificial data set of points on the plane. Second example 
handles a real data set in the UCI repository [14].  

A. An artificial data 
Figure 1 shows an artificial data set on the plane. Suppose 

that we wish to divide them into two clusters (K=2) and the 
true clusters are a small group in the upper side and the larger 
one in the lower side. The point is that the configuration of 
points looks like the two ‘wedges’ and at the same time two 
linear groups. The results of the constrained clustering are 
shown in Fig. 2 and Fig. 3, where the vertical axis shows the 
value of the Rand index to measure the accuracy of the results. 
The former figure uses the must-links alone without any 
cannot-link, while the latter figure uses the cannot-links alone 
without any must-link. The procedure of the experiment was 
as follows. 

The four methods of  

A. the COP K-means (the red curve), 

B. an EM algorithm using Shental’s method [10] (the 
green curve), 

C. the generalized COP K-means of the batch version 
(the blue curve), and 

D. the generalized COP K-means of the on-line version 
(the pink curve) 

were used. The parameter value was 10  . The horizontal 
lines of Figs. 2 and 3 imply the randomly generated number of 
must-links and cannot-links, respectively. To generate the 
results, we used 100 trials with randomly generated initial 
values to avoid dependency to the initial values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. Comparison of different methods using must-links. 

 
 

Figure 1. An artificial data set 

 
 

 
 

Figure 3. Comparison of different methods using cannot-links. 
 
 

Proc. of the Intl. Conf. on  Future Trends in Computing and Communication -- FTCC 2013 
Copyright © Institute of Research Engineers and Doctors. All rights reserved. 

ISBN: 978-981-07-7021-1 doi:10.3850/ 978-981-07-7021-1_01 
 



4 

B. Comparison on a set of real data 
MONK data set in [14] was selected for comparing 

performances of different algorithms. The results are shown in 
Fig. 4 and Fig. 5, where the former result is with  must-links 
alone and the latter with cannot-links alone. The four methods 
applied to this data were the same as those for the artificial 
data set, except that the results from COP K-means is shown 
by blue curves, those from the EM algorithm by pink curves, 
those from the batch version of the generalized K-means by 
red, and those from the on-line version of the generalized 
algorithm is by green. 

C. Discussion on two results 
An overall tendency observed from these figures shows 

that cannot-links work better than the must-links. Thus to mix 
must-links and cannot-links is not useful than to use cannot-
links alone. When we compare the four methods in these 
examples, it seems that the both methods, i.e., the on-line and 
the batch versions, of the generalized K-means work better 
than the other two methods with the exception of the artificial 
data set with must-links, where the simple COP K-means 
seems the best of the four.  

Note that to mix must-links and cannot-links is not useful 
in general, judging from our experiences in many experiments. 

Although we omit the details, we cannot easily tell which 
is the best algorithm in general, as the performance seems to 
be dependent on the data. However, we can at least say that 
the generalized K-means algorithms are useful, judging from 
the experiments. 

V. Conclusion 
We have developed two generalized K-means algorithms 

for constrained clustering. Both batch version and on-line 
versions were included. Two examples were tested and the 
developed methods worked well on these data. As a future 
study, we should continue numerical experiments on many 
data sets.  Moreover other variations such as kernel-based K-
means with constraints should be developed and tested using 
real examples. 
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Figure 4. Comparison of different methods using must-links on 

MONK data set. 
 

 
Figure 5. Comparison of different methods using cannot-links on MONK 

data set. 
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