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Abstract—Magnetic levitation has shown its potential in many 
engineering fields with promising future applications. This paper 
deals with the asymptotic tracking problem of desired reference 
position trajectories in an active mechanical suspension system 
using magnetic levitation foundations. A differential flatness-
based output feedback controller is proposed for accomplishing 
this control objective using only position measurements. The 
electromagnetic circuit dynamics is considered for design of the 
control voltage to regulate the position of the mechanical system 
in accordance with the specified motion planning. A robust 
observer is also presented for real-time estimation of the 
unavailable signals of acceleration and velocity. The electric 
current is algebraically reconstructed through the estimated 
signals. The efficient performance of the proposed observer-
control scheme is verified by computer simulation. 

Keywords—Active mechanical suspension, Magnetic 
levitation, Differential flatness, Observer. 

I.  Introduction 
The design and development of magnetic levitation-based 

devices and systems exhibit a growing trend due to their 
energy efficiency, high operation speeds, reliability, lifetime, 
reduction of pollution emissions and maintenance costs. 
Nowadays, technological innovations on practical applications 
of magnetic levitation can be found in high-speed passenger 
trains, magnetic bearings, vibration isolation systems, turbo 
machinery, machine tools, freight transportation, elevators, 
heart pumps, electric drives, toys and washing machines, with 
a promising future (see, e.g., [1-5] and references therein). 
Moreover, most of the available control schemes for magnetic 
levitation tasks are mainly based on simplified lineal 
mathematical models, which are only valid around certain 
nominal operation equilibrium points, and on the use of the 
electric current signal as control input variable but without 
considering the dynamics of the electromagnetic subsystem. In 
general, the research topic on magnetic levitation to robustly 
suspend a magnetic ball has been quite challenging over the 
years and a detailed survey seems to be out of the scope of this 
article. We thus refer the reader to some of the fundamental 
works in this area which have been helpful in the preparation 
of this paper [5-9].  

 

This paper deals with the magnetic levitation application to 
the problem of global stabilization and asymptotic tracking of 
an active linear mass-spring-damper mechanical suspension 
system. This configuration has the main advantage of saving 
electricity energy consumption when the system is located at a 
certain suspension position adjusted and established 
appropriately in the mechanical design of the system, as well 
as in the suitable smooth transference of the system to any 
desired position, taking clearly advantage of the spring force. 
The analysis is carried out for a mechanical system of one 
degree of freedom with a controllable electromagnet. 
Nevertheless, the employed design methodology could be 
extended to fully actuated or underactuated, differentially flat, 
mechanical systems with multiple degrees of freedom. 

The differential flatness property [10] is used for the 
synthesis of an output feedback control scheme that efficiently 
accomplishes the pursued control objective. By means of 
differential flatness the analysis and design of a controller is 
greatly simplified, including tracking of reference trajectories 
in accordance with the desired motion planning for the system. 

Our control design approach considers the electromagnetic 
circuit dynamics in the synthesis of a control voltage 
algorithm to regulate the position of the mechanical system in 
accordance with the specified motion planning. Since practical 
control implementations demand the use of a minimal number 
of sensors due to the goal of anyone of reducing costs, a lineal 
observation scheme is also presented for real-time estimation 
of the acceleration and velocity signals, which is robust with 
respect to state dependent disturbances, including possibly 
parametric uncertainty and external perturbations. In addition, 
the electric current signal is algebraically reconstructed 
through the estimated signals as a bonus thanks to the 
differential flatness property exhibited by the system. 
However, the electric current is not required by the controller 
proposed in this work. The efficient and robust performance of 
the proposed observation and control schemes is verified by 
computer simulation. The motion planning is specified to 
smoothly transfer the system from a rest position to another, 
but other reference trajectories can be implemented if 
required. 

II. Active Mechanical Suspension 
System 

Consider the mass-spring-damper suspension system 
shown in Fig. 1, where m, c and k are its mass, viscous 
damping and stiffness constant of the helical spring, 
respectively. Here, an electromagnet is used to induce an 
electromagnetic force fem to control the position x of the 
mechanical system. 
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Figure 1. Active mechanical suspension system. 

The mathematical model of the mechanical suspension 
system is described by 

( , )emmx cx ky f z i                            (1) 

with [8] 
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where the displacement x is measured from its static 
equilibrium position, in which the upward spring force exactly 
balances the downward gravitational force on the mass [11], z 
is the distance between the field source and the system’s mass, 
a is a constant, which is commonly determined by 
experimentation, and km is the electromagnetic force constant. 

The differential equation governing the electric current i is 
obtained by applying the Kirchoff's voltage law as [8] 

di
L Ri u

dt
                                       (3) 

where R is the winding resistance plus any additional series 
resistance in the control circuit, L is the coil inductance, and u 
denotes the control voltage. 

The mathematical model describing the dynamics of the 
mechanical system with an electromagnet is then given by 
equations (1)-(3) 
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where l0 is the initial length between the core and the static 
equilibrium position (u  0) of the system. 

Defining the state variables as 1z x , 2z x  and 3z i , 
one obtains from (4) the state space description 
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where 0l a   . 

The electromechanical system (5) is differentially flat, with 
flat output given by the position of the system y=z1. Then, all 
the system variables can be differentially parameterized in 
terms of the flat output and a finite number of its time 
derivatives [10]. For this, the time derivatives up to third order 
for y are obtained as 
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Therefore, the differential parameterization results in 
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            (7) 

The flat output y then satisfies the following input-output 
differential equation: 
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In the next section, the structural property of differential 
flatness will be used to design a controller to perform closed-
loop trajectory tracking tasks to smoothly transfer the 
mechanical system from an operation position to another. 

III. Differential Flatness Control 
From the nonlinear differential equation (8), we propose 

the following differential flatness controller for asymptotic 
tracking tasks of some desired reference position trajectory        

*( )y t : 
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The use of this controller yields the closed loop dynamics 
for the tracking error, *( ) ( )e t y y t  , 

 3
2 1 0 0e e e e                                (10) 

Therefore, selecting the design parameters i, i = 1, 2, 3, 
such that the characteristic polynomial associated with (10) be 
Hurwitz, one can guarantee that the error dynamics is globally 
asymptotically stable. 

A possible inconvenience that could present the controller 
(9) is its request of on-line measurements of the acceleration 
and velocity signals. Fortunately, the electromechanical 
system (5) is completely observable from the flat output y. 
Thus, we will also propose a robust lineal observation scheme 
to estimate to those unavailable signals, which can be used in 
case of the lack of acceleration and velocity sensors. Note that 
the acceleration signal can also be reconstructed from 
measurements of electric current, position and velocity by 
using the third equation of (6). 

IV. Design of a robust linear 
observer 

In the design process of the observation scheme, consider 
the perturbed mathematical model 

     3y b t u t                                (11) 
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where ( )t  is considered as an unknown state-dependent 

disturbance input signal, which includes ( )t  and deviations 

of *( )b t  with respect to the actual gain ( )b t . Note that ( )t  
could also include small perturbations due to parametric 
uncertainty and unknown external forces. 

It is assumed that the disturbance signal ( )t  can be 
locally described by a family of Taylor polynomials of (r-1)th 
degree as [12] 
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where all the coefficients pi are completely unknown. 

An approximated extended state space local model for the 
perturbed dynamics (11) is then given by 
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where 1 y  , 2 y  , 3 y  , 1  , 2  , 
 1

3 , , r
r i   


  . 

Based on the extended model (13), we propose the 
Luenberger-like observer 
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The estimation error dynamics is then obtained as 
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where 11 1e    , 22 2e    , 33 3e    , 
k kp ke    , 

1,2, ,k r . 

In fact, the estimation errors can be parameterized in terms 
of the output error e1 and a finite number of its time 
derivatives as follows 
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The characteristic polynomial associated with (15) is given 
by 
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which is completely independent of any coefficients pi of the 
Taylor polynomial expansion of the disturbance signal ( )t . 

The design parameters i  are then chosen so that the 
polynomial (17) is a Hurwitz polynomial. Thus, estimates of 
the acceleration and velocity signals are obtained by using the 
observer (14). Moreover, the electric current signal can be 
computed from (7) as 
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Hence, we propose the following output feedback 
controller for desired reference position trajectory tracking 
tasks in terms of the estimated signals: 
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I. Simulation Results 
Some computer simulations were performed in an active 

mechanical suspension system with an electromagnet 
characterized by the parameters described in Table 1 [9]. The 
values of the viscous damping, stiffness and initial length 
between the core and the static equilibrium position were 
chosen as: k =100 N/m, c =1 Ns/m and l0 = 0.02 m, 
respectively. 

TABLE I.  SYSTEM PARAMETERS 

m = 0.54 kg L = 0.8052 H 

R = 11.88  km = 0.0015 N m2/A2 

a = 0.008114 m  

The design parameters of the controller were selected to 
have the following third order characteristic polynomial for 
the closed-loop tracking error dynamics: 

  2 2
1( ) 2c n np s s p s s      

with 1 20np    rad/s and 0.7071  . 

The perturbation signal ( )t  was modeled as a second 
order time polynomial. Therefore, the characteristic 
polynomial for the sixth order resulting observation error 
dynamics was set to be of the following form: 

   
32 22o o o op s s s      
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with 500o   rad/s and 5o  . 

Fig. 2. depicts the efficient performance of the controller 
(19) using estimates of the velocity and acceleration signals 
provide by the implementation of the observer (14). The 
effective tracking of the reference position trajectory *( )y t  
can be clearly observed. This trajectory was specified to 
smoothly transfer the mechanical system from the rest position 
to the desired position of 0.01 m in approximately 2 seconds. 

On the other hand, Figs. 3 and 4 show the closed loop 
signals of the electric current and the control voltage required 
to perform the motion planning. 

 

 

Figure 2. Closed loop position trajectory tracking response. 

 

Figure 3. Closed loop response of the electric current signal. 

 

Figure 4. Control voltage signal applied to the electromagnet. 

II. Conclusions 
In this work we have proposed an output feedback 

controller for global stabilization and asymptotic tracking 
tasks of some position desired reference trajectory for an 
active linear mass-spring-damper mechanical suspension 

system. The dynamics of the electromagnetic circuit was 
included for the synthesis of a control voltage algorithm to 
efficiently regulate the mechanical system toward the desired 
nominal operation reference trajectories. In addition, a robust 
linear observation scheme was proposed to estimate in real-
time the acceleration and velocity signal in order to avoid the 
use of more than one sensor for the control implementation. 
An expression to algebraically reconstruct the electric current 
signal was also presented. Some computer simulation results 
were provided to show the efficient and robust performance of 
the observer-control scheme. Future work will be oriented to 
verify experimentally the robustness of the controller and the 
observer proposed in this paper with respect to parametric 
uncertainty and external perturbation forces. Moreover, a 
comparative analysis on energetic efficiency will be 
performed between the configuration of the presented 
mechanical suspension system and the traditional problem of 
suspending a magnetic mass. 
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