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Abstract— The response of a multi supported structure 
subjected to spatially varying ground motion at its different 
supports is of great importance for structures like bridges, pipe 
lines, viaducts, tunnels etc,. Various reasons like local site 
conditions, wave passage effect, incoherence effect and 
attenuation effect tend to induce a phase difference and time lag 
in the ground motion which results in differential ground 
motions at each supports. Assuming that the differential input is 
available at the various supports the response of the structure 
can be obtained by the Pseudo-static methods. In these methods 
the static component of the response is expressed as a function of 
influence matrix and the input motion which remains 
independent of the dynamic response. The dynamic component is 
then computed by using various methods which are then 
combined with the static components to get the total response. In 
literature many authors have tried using the modal superposition 
method for finding the dynamic response of the structure. In this 
paper the seismic response of the structure is evaluated by using 
Ritz modes which was then compared with the modal 
superposition method. The methods were explained by using an 
example of a bridge model. 
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I. INTRODUCTION 

Dynamic response induced by non- uniformly distributed 
ground motions, termed as multi support excitation is 
important for large-span structures such as bridges, buildings 
of large aspect ratio, pipe lines, dams etc. Spectacular failures 
of bridges due to un-seating of decks (dislodging of bridge 
decks from the piers) reveals that there are relative 
displacements between the points even a few tenths of meters 
apart. The Loma Prieta earthquake that struck the San 
Francisco Bay area of California on October 17, 1989, caused 
major damages to the bridges due to unseating of the decks as 
the piers were subjected to differential movements. It was then 
the studies on response of structures to multi support excitation 
gained importance. Generally while analyzing a structure for 
seismic forces it was assumed that the ground motions between 
various supports are fully correlated in space and are 
represented by response spectrum, time histories, power 
spectral density functions etc. But this assumption will not be 
valid for spatially varying structures since the correlation 

between the grounds motion at various supports cannot be 
ignored.  

II. LITERATURE REVIEW 

In early stage, most of the studies investigated only the 
wave passage effect on the response of structural systems 
simulated using relatively simple finite element models. 
(E.g .Bogdanoff et al., 1965[1]; Masri, 1976[2]). 

 Leimbach and Sterkel [3] implemented the direct time 
integration and modal analysis method for multi support 
excited problem and also studied the importance of considering 
the multi support excitation. Albdel-Ghaffar and Rubin (1982 
and 1983) [4] used the random vibration approach to examine 
the seismic response of suspension bridges under multisupport 
excitations. Harichandran and Wang (1988) [5] investigated 
the effect of the spatial variation of ground motions on the 
response of a one-span simple beam using a random vibration 
approach. Zerva (1992) [6]compared the seismic response of 
pipelines under spatially varying ground motions generated 
using two different spatial variability models proposed by 
Harichandran and Vanmarcke (1986) [7] and by Luco and 
Wong (1986)[8]. Zerva (1994) [9] examined the effect of the 
spatial incoherence and apparent propagation of the seismic 
ground motions on the response of lifelines subjected to ground 
motions generated from widely used spatial variability models. 
Abdel-Ghaffer and Nazmy, 1991[10]  studied the seismic 
response of different models of modern cable-stayed bridges to 
both spatially varying and uniform excitations with input 
motions established using existing strong motion records. 
Harichandran et al. (1996) [11] compared the seismic 
response of long-span bridges to both spatially variable ground 
motions and uniform ones. They found that uniform excitations 
are generally unacceptable for long-span bridges, and that the 
incoherence effect should be considered for the seismic 
response evaluation of these structures. Monti et al. (1996) 
[12] analyzed the nonlinear seismic response of multiple-span 
bridges subjected to spatially variable excitations in a Monte 
Carlo simulation framework. Der Kiureghian and Keshishian 
(1997) [13] investigated the effect of spatially variable ground 
motions on the seismic response of bridges. Seismic ground 
motions were generated using the coherency model developed 
by Der Kiureghian (1996) [14] that considers wave-passage, 
incoherency, and local soil effects. They concluded that: the 
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spatially ground motions can either increase or decrease the 
bridge response Saxena et al. (2000), [15] conducted nonlinear 
dynamic response evaluations of two multi-span bridges 
subjected to spatially variable ground motions. Two types of 
differential ground motions were used, i.e., all structural 
supports on same local soil conditions and different structural 
supports on different local soil conditions. The ground motions 
are generated using a variation of the spectral representation 
method (Deodatis 1996[16]). It was concluded that the 
assumption of identical ground motions yields generally 
conservative results. Lin et al. (2004) [17] examined the effect 
of spatially variable ground motions on the seismic response of 
long-span bridges using the random vibration approach. Their 
results showed that the wave passage effect cannot be 
neglected when evaluating the seismic safety of these bridges. 
In the present paper the response of the structure to multi-
support excitation was found by direct time integration method, 
pseudo-static method, modal analysis and by using Ritz vectors 
assuming that the input motion at the supports are available.   

III. FORMULATION FOR MULTI SUPPORT EXCITATION: 

 
The equations of motion for the MDOF system with multi-
support excitation can be written as[18]: 
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where 
Mss, Kss and Css are the mass, stiffness, damping matrices 
corresponding to non-support degrees of freedom. 
Mgg ,Kgg and Cgg are the mass, stiffness, damping matrices 
corresponding to the support degrees of freedom. 
Msg Mgs Ksg Kgs Csg Cgs are the coupling mass, stiffness, 
damping matrices that express the inertia force in the non-
support degrees of freedom of the structure due to the motions 
of the supports (inertia coupling). 
Xt is the vector of total displacements corresponding to non-
support degrees of freedom. 
Xg is the vector of input ground displacements at the supports; 
a dot denotes the time derivatives. 
Fg denotes forces generated at the support degrees of freedom. 
For an MDOF system with single-support excitation, the total 
displacement of the non-support degrees of freedom is 
obtained by simply adding the input support motion to the 
relative displacements of the structures with respect to the 
support. For multi support excitation, the support motions at 
any instant of time are different for the various supports and, 
therefore, the total displacements of the non-support degrees 
of freedom (NSDF) are equal to the sum of the relative 
displacements of the structure with respect to the supports and 
the displacements produced at support degrees of freedom 
(SDF) due to pseudo-static motions of the supports. The latter 
are obtained by a pseudo-static analysis of the structure for the 
support motions. 
 
Therefore the displacement Xt   is given as 

          where           (2) 
Where 
Xs=static displacement 
X=dynamic displacement of structure 
r- is an influence coefficient matrix of size n x m 
n-is the number of non-support degrees of freedom 
As the responses of NSDF are of interest, the first set of 
equations obtained from equation (1) are considered for the 
analysis, that is, 
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      (3) 
Or    ̈
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      (4) 
Equation (4) is in terms of total displacements of NSDF with 
inputs as the support displacement velocities, and 
accelerations. If the effects of mass and damping couplings are 
ignored, then equation (4) takes the form 
 
    ̈

      ̇
      

           (5) 
 
As Ksg can be determined, the right hand side of the equation 
is known and equation (5) can be solved to obtain the total 
displacements. 
An equation of motion can also be written in terms of relative 
displacements of the structure by substituting equation (2) into 
equation (4) leading to: 
    ̈      ̇        (        ) ̈  (    

    ) ̇                 (6) 
To find the pseudo-static displacement Xs produced due to the 
support displacement Xg, the pseudo static equation of 
equilibrium can be written as: 
 
                 (7) 
 
The solution for Xs gives 
 
       

               (8) 
Substituting equation (8) into equation (7), it is seen that 
               (9) 
From equation (8), it is seen that the r matrix can be obtained 
by knowing Kss and Ksg. It is evident from equation (9) that the 
last term equation (6) is zero. Furthermore, Msg denoting the 
inertia coupling is generally neglected for most structures 
when lumped mass system is used. The contribution of the 
damping is ignored. With these two assumptions, equation (6) 
takes the form 
    ̈      ̇             ̈    (10) 
To solve the equation (10), the time histories of the ground 
accelerations are to be applied at the supports. The solution of 
the equation of motion provides the responses of the non-
support degrees of freedom relative to the support. In order to 
obtain the total (absolute) responses at the non-support 
degrees of freedom, equation (2) is used. The inertial forces in 
the member are obtained using the absolute responses (not the 
relative responses).  
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IV. TIME HISTORY METHOD: 

The response of the structure for the multi support excitation 
can be obtained by using the time history analysis. The 
Newmark‟s family of algorithm [19] can be employed to the 
equation (5) to obtain the total response of the structure which 
is composed of static response and dynamic response. The 
Pseudo static methods in which the static components and 
dynamic components are separated (equation 10) can also be 
solved by using the time history methods. In order to illustrate 
the use of this family of numerical integration methods 
consider the solution of the linear dynamic equilibrium 
equations written in the following form: 
  ̈    ̇            (11) 
The direct use of Taylor‟s series provided a rigorous approach 
to obtain the following two additional equations: 

            ̇     
   

 
 ̈     

   

 
 ̉       (12) 
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Newmark truncated these equations and expressed them in the 
following form: 

            ̇     
   

 
 ̈          ̉   (14) 

 ̇   ̇        ̈          ̉      (15) 
If the acceleration was assumed to be linear within the time 
step, the following equation can be written: 

 ̉  
  ̈   ̈     

  
     (16) 

The substitution of equation (15) into equation (14) produced 
Newmark‟s equations in standard form 

            ̇     (
 

 
  )    ̈          ̈  (17) 

 ̇   ̇             ̈         ̈      (18) 
Newmark used equations (18, 17 and 11) iteratively, for each 
time step, for each displacement DOF of the structural system. 
The term  ̈  was obtained from equation (11) by dividing the 
equation by the mass associated with the DOF. 

V. MODAL ANALYSIS METHOD: 

An Eigen value analysis of the structure results in the Eigen 
modes which can be used to study the response of the 
structure[20][21]. The dynamic response is obtained by 
transforming the system to modal coordinates by using modal 
transformation        By using the Eigen modes of the 
structure, the stiffness and damping matrices are decoupled 
and it can be analyzed as a single degree of freedom system.  
 ̈         ̈    

    ∑     ̈    
 
          n (19) 

where k represents the degrees of freedom attached to the 
supports, n represents mode number. 
The modal participation factor is given by 

    
  

           

  
    

     (20) 

Where rk is the kth column of influence matrix , ik is the kth 
column of n x n identity matrix. 
 

VI. RAYLEIGH RITZ METHOD: 

This method can be used for reducing the number of degrees 
of freedom by finding approximate modes which are 

orthonormal to each other. In this method the structural 
displacement is represented by        where Ψ are the Ritz 
modes, which are used to reduce the system to single degree 
of freedom system and can be used to calculate an 
approximate value of the fundamental frequency[22][23]. In 
Rayleigh Ritz method the displacements are represented as 
linear combination of Ritz vectors 
      ∑           

          (21) 
Where yj(t) are called the generalized coordinates. The Ritz 
vectors    are linearly independent vectors but they satisfy the 
geometric boundary conditions. The Ritz vectors are generated 
from the vector „s‟ which describes the spatial distribution of 
the forces. It can be obtained by solving the equation  
            (22) 
The obtained vector is mass normalized to get the first Ritz 
vector, thus 
   

  

   
     

        (23) 

The next vector   is determined from the first Ritz vectors. 
The vector   is obtained by solving  
            (24) 
The vector   contains a component of the previous vector   . 
It can be expressed as  
    ̂            (25) 
      

         (26) 
where  ̂ is a pure vector which doesn‟t contain any influence 

of the previous vector. This vector is mass normalized to get 
the second Ritz vector. The advantage of using the Ritz vector 
is that the exact behavior of the structure can be predicted by 
using fewer modes. It also reduces the computational efforts to 
calculate the Eigen modes. 

VII.  NUMERICAL EXAMPLE: 

A simplified cable stayed bridge [24] as shown in the figure 1 
is assumed to demonstrate the various methods describes 
above. The geometric non-linearity in the pretension cable of 
the bridge is neglected.  
The stiffness matrix Kss, Ksg, Kgg corresponding to super 
structure degrees of freedom, coupling term and support 
degrees of freedom are extracted. The results obtained from 
various methods described earlier by subjecting the support to 
El Centro earthquake without time lag are shown in figures 
2,3, 4, 5 and with a time lag at various supports in figures 6,7, 
8, 9 
 

 
Figure 1 Simplified model of a cable stayed bridge 
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Figure 2 Response of Superstructure DOF by Direct Time Integration Method 
for SSE 

 

 
 

Figure 3 Response of Superstructure DOF by Pseudostatic Method for SSE 
 
 

 
 

Figure 4 Response of Superstructure DOF by Modal analysis method for SSE 
 

 
 

Figure 5 Response of Superstructure DOF by Ritz Vectors for SSE 
 

 
 

Figure 6 Response of Superstructure DOF by Direct Time Integration Method 
for MSE 

 

 
 

Figure 7 Response of Superstructure DOF by Pseudostatic Method for MSE 
 

 
 

Figure 8 Response of Superstructure DOF by Modal analysis method for MSE 
 

 
 

Figure 9 Response of Superstructure DOF by Ritz Vectors for MSE 
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VIII. RESULTS AND DISCUSSION 

From the figure 3-10 it can be observed that the direct time 
integration algorithm resulted in smoother responses as the 
output response is not divided into dynamic and static part. The 
responses from Pseudo-static method, modal analysis method 
and Ritz vectors are similar since in all these methods the 
response was divided into static and dynamic part and the 
dynamic response was calculated by various methods described 
earlier and added up to the static component which remained 
constant. When the supports were given uniform excitations it 
can be seen that the degrees of freedom 1 and 2 coincide 
exactly with each other. But when the supports were given 
different excitations the responses obtained in degree of 
freedom 1 and 2 are entirely different and they are out of phase 
indicating the potential risk in using asynchronous motion and 
the need to consider multi support excitations. Asynchronous 
motion also imparts rotation in the structure which is not 
present in uniformly excited motion. From figure 9 and 10 it 
can be seen that the force dependent Ritz vectors gave similar 
responses as that of the modal vectors. The advantage of using 
Ritz vector is that the computational time is greatly reduced 
and fewer modes are enough to extract the responses of the 
structures.. 
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