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Abstract: In this paper, variety of classifiers for supervised target 

classification of polarimetric synthetic aperture radar (SAR) 

image explained. Compared to traditional classifiers such as ML 

classification,complex Wishart distribution  or Adabo0st 

classifier, the SVM (Support Vector Machine) method is more 

robust, accurate and flexible. This algorithm not only uses a 

statistical classifier, but also preserves the purity of dominant 

polarimetric scattering properties. Different features or 

parameters extracted from Polarimetric SAR data could be 

adopted into the scheme and a quantitative analysis on the 

significance of each parameter for classification could be 

achieved. Experiment results demonstrated the effectiveness of 

the SVM. 
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1. INTRODUCTION 

Terrain and land-use classification are arguably the most 

important applications of polarimetric synthetic aperture radar 

(SAR). Many supervised and unsupervised classification 

methods have been proposed [1]–[14]. Earlier classification 

algorithms classify polarimetric SAR images based on their 

statistical characteristics [1]–[8]. For single-look complex 

polarimetric SAR data, Kong et al. [4] derived a distance 

measure for maximum-likelihood classification based on the 

complex Gaussian distribution [15]. Yueh et al. [5] and Lim et 

al. [6] extended it for normalized polarimetric SAR data. van 

Zyl and Burnette [7] further expanded this approach by 

iteratively applying the a priori probabilities of the classes. 

For multilook data represented in covariance or coherency 

matrices, Lee et al. [8] derived a distance measure based on 

the complex Wishart distribution [15]. This distance measure 

has been incorporated in developing other POLSAR 

classification algorithms [11]–[14]. Ferro-Famil et al. [13], 

[14] have extended this class of classification algorithms to 

multifrequency, and to polarimetric SAR interferometry data, 

using interferometric coherences to separate man-made targets 

from vegetated areas. An alternative approach is to classify 

polarimetric SAR images based on the inherent characteristics 

of physical scattering mechanisms. This approach has the 

additional advantage of providing information for class type 

identification. van Zyl [9] proposed to classify terrain types as 

odd bounce, even bounce, and diffuse scattering. For a refined 

classification into more classes, Cloude and Pottier [10] 

proposed an unsupervised classification algorithm based on 

their target decomposition theory. Scattering mechanisms, 

characterized by entropy H and angle, are used for 

classification. The H plane is divided into eight zones and 

eight classes. The physical scattering characteristics associated 

with each zone provide information for terrain type 

assignment. The deficiency of this approach is that the 

classification result lacks details, because of the preset zone 

boundaries in the H and plane. Clusters may fall on the 

boundaries, and more than one cluster may be enclosed in a 

zone. A combined use of physical scattering characteristics 

and statistical properties for terrain classification is desirable. 

Such an algorithm has been proposed by Lee et al. [11], which 

applied the Cloude and Pottier decomposition scheme for 

initial classification, followed by iterated refinement using the 

complex Wishart classifier. Significant improvement in 

classification of details during iterations was observed. Pottier 

and Lee [12] further improved this algorithm by including 

anisotropy to double the number of classes to 16. In both 

algorithms, the final classification can be substantially 

different from initial classified results, and pixels of different 

scattering mechanisms could be mixed together, because the 

Wishart iteration is based only on the statistical characteristics 

of each pixel. Thus, the physical scattering characteristics are 

ignored for pixel reassignment during iterations. 

 The aim of this paper is two fold: First, it is to assess 

the potential of radar polarimetric data for land use 

classification over a tropical environment. Second, it is to 

evaluate the contribution of different polarimetric indicators 

for such application. To this end, a support vector machine 

(SVM) classification method is used since it is well suited to 

handle linearly nonseparable cases by using the Kernel theory 

[14]. Among other advantages, this method allows defining 

feature vectors with numerous and heterogeneous components. 

It has been mostly applied to hyper spectral remotely sensed 

data, and a few studies have also been carried out on SAR data 

[15], [16]. 

 In the next all sections we will introduce Polarimetric 

data & parameters & basic five types of classification 

techniques used now a day for various applications and then 

the last section introduces the comparison statistics which 

helps to decide which classification methodology will be 

preferred. 

 

2. POLARIMETRIC DATA & PARAMETERS 

Polarimetric radar measures the complex scattering matrix of a 

medium with quad polarizations. We can simply divide the 

polarimetric features into two categories: one is the features 

based on the original data and its simple transform, and the 

other is based on target decomposition theorems. The first 

category features in this work mainly include the Sinclair 

scattering matrix, the covariance matrix, the coherence matrix, 

and several polarimetric parameters. The classical 2 × 2 

Sinclair scattering matrix S can be achieved through the 

construction of system vectors   
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In the monostatic backscattering case, for a reciprocal target 

matrix, the reciprocity constrains the Sinclair scattering matrix 

to be symmetrical, that is, SHV = SVH. Thus, the two target 

vectors kp and Ωl can be constructed based on the Pauli and 

lexicographic basis sets, respectively. With the two 

vectorizations we can then generate a coherency matrix T and 

a covariance matrix C as follows: 
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All the classifiers accepts these features as an input for 

classification and depending upon the optimum feature 

selection for a particular application,any one classifier can be 

adopted for successful classification of Polarimetric SAR 

Image. 

3. POLARIMETRIC SAR CLASSIFICATION 

ALGORITHM 

(a) Maximum Likelihood Classifier: Maximum Likelihood 

(ML) technique is one of the most popular methods for SAR 

image classification. It determines the distributions of the 

information extracted from the image in each band for each 

class. Each unknown pixel is then assigned to a class based 

upon Gaussian probability. The likelihood function is given as 

follows on the assumption that the ground truth data of class k 

will form the Gaussian distribution [25]. 
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Xi is the mean vector of the ground truth data in class i, Si is 

the variance-covariance matrix of i class produced from the 

ground truth data and Si is the determinant of Si . The ML 

classifier is popular because of its robustness and simplicity. It 

also provides a consistent approach to parameter estimation 

problems. In addition, ML classifier has desirable 

mathematical and optimality properties. From the statistical 

point of view, with the small value of variance, a narrow 

confidence interval can be obtained, resulting an accurate 

classification of the image [26]. 

 

(b) Adaboost Classifier: Boosting is a powerful and well-

studied method of finding a highly accurate classifier by 

combining many weak classifiers generated by a base learning 

algorithm. The final hypothesis is, typically, a weighted vote 

of the weak hypotheses. By keeping each of the weak 

hypotheses to be a simple rule, one can then control the 

complexity of the final hypothesis, and thereby, using VC-

theory [10], expect a low error on the test examples as well. A 

major breakthrough came in the form of Freund and 

Schapire’s ADABOOST algorithm [11] which is extremely 

efficient and also very easy to implement. It has received 

extensive empirical and theoretical study and has been found 

to work very well on several practical two-class classification 

problems. Throughout this work we apply the variant of the 

AdaBoost algorithm presented by Viola and Jones [12]. This 

variant restricts the weak classifiers to depend on single-

valued features fj only. The algorithm is described as follows: 

The AdaBoost procedure can be easily interpreted as a greedy 

feature selection process. Consider the general problem of 

boosting, in which a large set of classification functions are 

combined using a weighted majority vote. The challenge is to 

associate a large weight with each good classification function 

and a smaller weight with poor functions. AdaBoost is an 

aggressive mechanism for selecting a small set of good 

classification functions which nevertheless have significant 

variety. Drawing an analogy between weak classifiers and 

features, AdaBoost is an effective procedure for searching out 

a small number of good ‖features‖ which nevertheless have 

Significant variety. 

(c) Freeman Decomposition: In 1998, Freeman [4]proposed a 

polarimetric target decomposition algorithm based on a three-

component scattering model. Assuming that the reciprocity of 
scattering came into existence, Freeman designed the 
modeling of three important scattering mechanisms--- volume 

(or canopy) scattering, double-bounce scattering and surface 

scattering. For volume scattering, it is assumed that the radar 
return is from a cloud of randomly oriented, very thin, and 

cylinder-like scatterers. Double-bounce scattering is modeled 

by scattering from a dihedral corner reflector, where the 

reflector surfaces can be made of different dielectric materials. 

Finally, surface scattering is modeled by a first-order Bragg 

modeling. By making several simplifying assumptions, the 
second-order statistics of the resulting three covariance 
matrixes can be derived. Based on these models, Freeman 

thought that the covariance matrix of target can be represented 

by the weighted sum of the covariance matrices of three 
scattering mechanisms: 

 

<[C]>=fv[CV]+fs [CS]+fD[CD] 

 

Further according to the conclusion of van Zyl [5], the 

decomposition coefficients of the three scattering mechanisms 

can be obtained by Freeman 

decomposition, and the dominant scattering mechanism of 

target can be determined by comparing three coefficients. 

(d) Wishart Distribution Classifiers: Assuming that the 

reciprocity principle is satisfied, the complex scattering vector 

measured by a fully polarimetric SAR is  x = [SHH    √2SHV     

SVV]
T   

where ―T‖ denotes the matrix transpose.For dual-

polarization SAR, the scattering vector is : 
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x=[S1 S2]
T 

where the subscripts ―1‖ and ―2‖ denote HH,HV or 

VV.The polarimetric covariance matrix is [1] as follows: 
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Where L is the number of looks,xi is the ith look sample of x 

and ―H‖ refers to the complex conjugate transpose. C has the 

complex Wishart distribution[11].  
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Where ∑=E{C}is the ensemble average of C, q is the number 

of polarimetric channels.Tr(.) and {.} denote the trace and 

determinant of a matrix, respectively .R(L,p)=π
q(q-1)/2 

£(L).....£(L-q+1) is the normalization factor, and £(.) is the 

gamma function. 

(e) Support Vector Machine: Support vector machine theory 

is based on statistical learning theory and the minimization 

principle to structure risk. It has stronger generalization 

ability. The basic principle of the SVM is to find the optimal 

linear hyperplane such that the expected classification error for 

unseen test samples is minimized. On the basis of this 

principle, a linear SVM uses a systematic approach to find a 

linear function with the lowest VC dimension. For nonlinear 

separable data, the SVM can map the input to a high 

dimensional feature space where a linear hyperplane can be 

found. Therefore a good generalization can be achieved by the 

SVM compared to conventional classifiers [2]. In the case of a 

linear separable two-class problem, with examples {(x1, y1), 

(x2, y2)...... (xm, ym)}, the final optimal decision function can 

be obtained: 
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For a linear SVM, the kernel function is just a simple dot 

product in the input space. For a nonlinear SVM, the samples 

can be projected to a feature space of higher dimension via a 

nonlinear mapping function. Then the optimal decision 

function can be written as:  
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Where K(x, xi) is the kernel function. The kernel function in 

the SVM classifier plays the important role of implicitly 

mapping the input vector into a high dimensional feature 

space. There is currently no technique available to learn the 

form of kernels. Common choices of kernel function are the 

linear kernels, polynomial kernels, and Gaussian RBF kernels 

in SVM research. They are defined as follows:  

 

 Linear kernels 

ii xxxxk .),(    (3) 

 Polynomial kernels 
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4. EXPERIMENTAL RESULTS 

Examples are given in this section to illustrate the 

effectiveness of this classification algorithm. NASA/JPL 

AIRSAR L-band data of San Francisco are used to show the 

applicability of this algorithm for general terrain classification 

using the original four-look data. The spatial resolution is 

about 10 *10 m. This polarimetric SAR data has 700*901 

pixels. The radar incidence angles span from 5 to 60 . This 

data was originally four-look processed. To retain the 

resolution, no speckle filtering or additional averaging is 

applied. This scene contains scatterers with a variety of 

distinctive scattering mechanisms. The original POLSAR 

image is displayed in Fig. 1(a), with Pauli matrix components: 

HH VV HV , and HH VV , for the three composite colors: red, 

green, and blue, respectively. The Maximum Likelihood 

Classification is shown in Fig.2(b). The Freeman 

decomposition using , and for red, green, and blue is shown in 

Fig. 2(c). The Freeman decomposition possesses similar 

characteristics to the Pauli-based decomposition, but Freeman 

decomposition provides a more realistic representation, 

because it uses scattering models with dielectric surfaces. In 

addition, details are sharper. The Classification results by 

Adaboost Classifier  are clearly shown in Fig 2(d).The most 

accurate classification is achieved by recent classifier SVM is 

shown in Fig.2(e).Comparison of classification accuracy in 

NASA/JPL AIRSAR L-band data of San Francisco is 

explained in Table 1. 

 

5. CONCLUSION 

We addressed the problem of classifying POLSAR image with 

help of different classifiers. Firstly,using PolSARpro4.2 

software we present an evolution of different features for 

POLSAR image classification with classifiesr.  And  the 

operation of all classifiers are  proposed.  After evolution, the 

features are concatenated & optimum feature selection for 

SVM is performed on the combined feature.  Our observation 

suggests can get the feature weight as well as the SVM 

parameters. According to the feature weights vector, those 

features with non-zero weights are selected out and 

subsequently used for classification. SVM actually improves 

the classification rate, computation efficiency and complex by 

effectively pruning away irrelevant features. 
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Table 1. Performance Comparison of  different classifiers 

 

Name of the Classifier  Overall Training Time (s) 

ML 154.28 

Freeman Decomposition 65.56 

Adaboost 41.76 

Wishart Distribution 40.66 

SVM 34.87 

 

 

 

 

                
Fig(a). NASA/JPL AIRSAR L-band data of San Francisco  

 

 

 
Fig(b) ML  Classifier Results  
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 Fig(c) Freeman Decomposition Results 

 

 

Fig(d). Adaboost Classifier Results 
 

     

   
              Fig(e) Wishart  Distribution Classifier  Results 

 

 

Fig(f).SVM Classifier Result; 

 
 

 

 

 

 


