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Abstract — A Hybrid Grid Generation Method that 
combines the computational efficiency of the Cartesian grid 
and the flexibility of the meshless strategy is developed for 
computation of the compressible invicid flows over general 
geometries and moving boundary applications. The meshless 
zone is created around the geometry by producing layers of 
nodes along normal direction vectors while Cartesian grid 
method is used elsewhere. Last layer is used as virtual 
geometry for automatic generation of unstructured Cartesian 
grid around meshless zone. An efficient central difference 
scheme with artificial dissipation terms is developed for both 
Cartesian grid and meshless zones. The method is used for 
computation of flows around stationary, moving and oscillating 
airfoil at subsonic and transonic flow conditions. Results 
indicate good agreements with other reference numerical data. 

Keywords: Adaptive Cartesian Grid, Moving Boundary, 
MeshLess Method 

I. Introduction 
The main problem of Computational Fluid Dynamics 

(CFD) is mesh generation for configurations with complex 
geometry specially with moving boundaries. The structured 
grid methods are not efficient for such cases. The main 
advantage of unstructured grid methods is the facility of grid 
generation for complex configurations. However, the 
computational costs and memory requirements are generally 
higher than their structured grid counterparts. Alternatively, 
the unstructured Cartesian grid methods can be used that 
offer ease of grid generation, lower computational storage 
requirements, and significantly less operational count per 
cell compared to body fitted curvilinear grids [1]. Embedded 
and adaptive grids, can also be used to provide better 
resolution and moving of geometry and flow features in 
Cartesian grid. However, the main challenge in using this 
method deals with arbitrary boundaries. As the grids are not 
body aligned, Cartesian cells near the body can extend 
through surfaces of solid components. Hence, accurate 
means of representations for surface boundary conditions 
are essential for the success of Cartesian schemes.  
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In this research a hybrid grid generation method that 
combines the computational efficiency of the Cartesian grid 
and the flexibility of the meshless strategy is developed for 
computation of the compressible viscous flows over general 
geometries and moving boundary applications. The 
meshless zone is created around the geometry by producing 
layers of nodes along normal direction vectors while 
Cartesian grid method is used elsewhere. Last layer is used 
as virtual geometry for automatic generation of unstructured 
Cartesian grid around meshless zone. Since the majority of 
computational domain is solved using the Cartesian grid 
method, the resulting procedure is very efficient in terms of 
both computational cost and storage requirements. In 
addition, since the meshless method is used to obtain the 
solution for the solid boundary points the developed method 
can easily be used for complex geometries without need to 
generate the body-fitted mesh. The Cartesian grid is then 
adapted to  

the location of virtual geometries and flow solution to 
enhance the quality of the results with the minimum 
computational cost. The Navier-Stokes equations are solved 
using a cell-centered finite volume scheme in Cartesian grid 
zone with second order central difference that stabilized by 
artificial dissipation [2]. Like finite difference method, the 
meshless algorithm is applied directly to the differential 
form of the governing equations. Almost all of meshless 
methods makes use of a least-square formulation [3]. The 
least-square discretization is stabilized by artificial 
dissipation.  

The hybrid method was development to moving 
boundary applications such as moving airfoil at stationary 
fluid or oscillating airfoil at fluid flows. An advantage of 
this approach for unsteady moving boundary problems is 
that the Cartesian grid is fixed similar to a background grid 
and the meshless zones are moving on top of the Cartesian 
grid. The Cartesian grid is then adapted to virtual geometry 
position. Thus the equations of flow are solved in arbitrary 
Lagarangian–Eulerian formulation in meshless zone and 
Eulerian formulation in Cartesian grid. The Cartesian grid is 
adapted to the new virtual geometry and flow solution to 
enhance the quality of the results with the minimum 
computational cost. An efficient binary tree data structure is 
used for generating Cartesian grid. The development dual-
time implicit time discretization scheme is then applied to 
the presented for calculation of compressible inviscid flow 
on hybrid grid. 

II. Governing Flow Equations 
Two-dimensional compressible invisid flow equations 

consisting of the mass, momentum, and energy conservation 
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laws. The flow domain is divided to two zones. A first zone 
is adaptive Cartesian grid that is fixed. The governing 
equations solve in Eulerian form that can be written in the 
differential form  as:  
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Here P ,  , u , v  and E  denote the pressure, density, 

Cartesian velocity components in x and y directions and 
total energy, respectively. For a perfect gas: 
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where  is the ratio of specific heats. 

The second is meshless zone that moves on the first 
zone. Therefore The governing equations solve in 
Lagrangian-Eulerian form that can be written in the 
differential form  as : 
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where 
s

w  is vector of  point velocity and 
t

x , 
t

y  are 

components of velocity in x and y directions, respectively.  

III. Numerical Method 

A. Finite volume spatial discretization 
for Cartesian grid 

 
The Euler equations are solved using a central second 

order cell-centered finite volume scheme in Cartesian grid 
zone that was stabilized artificial dissipations [2]. The finite 
volume approximation of the cell k becomes:   
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where p and k are the number of cell in right and left of 

edge , respectively. u   and v  are the velocity  

components  and a  is  the  speed  of  sound  on edge . 

2
k and 

4
k are  two  empirically  chosen  constants,  which  

typically  have values in the range 
2

0 .5 1k  and 

4

1 1
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k   . The flow variables on edge  evaluating 

with arithmetic averaging. 

B.  Spatial discretization for meshless 
zone 

The least-square meshless method is used to discretization 
of the flow equations in the conservation form. The spatial 
derivatives of the function by using the least-square 
method[4]:   
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where 1 / 2j   is the mid-point of the edge ij, where j is in 
a cloud of point i  (Fig.1). The coefficients in Eq. (8) are 
least-square coefficients and can be calculated using the 
inverse distance weighting function as:   
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Applying the least-square approximations given by Eq. 
(8) to each component of flux functions in Eq. (4), a semi-
discrete form of the Euler equations at point i is obtained: 
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If  the  numerical  flux  at  the  mid-point  are  evaluated  
using the simple arithmetic averages of conservative  
variables  at  the  two  end  points,  the  resulting  of  the 
numerical scheme is equivalent  to  the  central  differencing  
method. It is well known that such discretization lead to 
unstable schemes, and must be augmented by stabilizing 
terms. This  can  be  achieved  either  by  adding  directly  
second  and forth  order  damping  terms.  
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Further details of the dissipation terms calculation can be 
found in refs [4].    

IV. Meshless zone point creation 
In the first step, the surface must be broken up into 

elements (edges in 2D and faces in 3D) for full description 
of a complex geometry. To generate the efficient 
distribution of points in the mess-less zone around the 
geometry the unit normal vector for all vertices on the 
geometry are calculated. At the next step, the layers of nodes 
are produced along the normal lines until a user specified 
numbers of layers (Fig. 2). 

V. Adaptive Cartesian grid 
generation 

Generation ot the unstructured cartesian grid is carried 
out following the work of Jahangirian and Shoraka [2]. To 
complement the meshless zone for solution of the governing 
flow equations a series of halo points are added outside the 
meshless zone that two layers of Cartesian cells are selected 
and their centers are considered for meshless zone 
computations. The close view of the generated final grid 
(including halo points) around a NACA 0012 airfoil is 
shown in Fig. 3.  

One of the advantages of the Cartesian-based grid 
generation methods is the ease in which the refinement and 
coarsening is performed by the tree data structure. The use 
of binary tree, i.e. allows refined cells to be added to the 
domain by simply creating new sub-branches logically 
below the refined cell. Cell coarsening will become more 
important especially when a transient solution is needed 
because the position of various phenomena may change 
during transient solution. In the present work, the solution-
based grid adaptation is carried out using the following 
algorithm [3]: 

(1) Start the adaptation process when the selected equation 
residual is lower than a specified limit. 
(2) Calculate the indicator parameter for all Cartesian cells. 
(3) Mark cells for refining and coarsening. 
(4) Perform coarsening processes on the Cartesian grid. 
(5) Perform refining processes on the Cartesian grid. 
(6) Check the balancing constraint. 
(7) Interpolate flow properties on the new Cartesian cells. 
(8) Return to the flow solution algorithm. 

VI. Results 
To demonstrate the capabilities of the present method in 

generating and adapting the Cartesian grid for moving 
boundary, a rotating of NACA0012 airfoil and modification 
of grid for new position is shown in Fig. 4. A test case to 
validation of hybrid method to simulation unsteady flow is 
moving the NACA0012 airfoil in the stationary air. The 

Mach number of airfoil is 0.5. For comparison purpose, this 
problem is also run in the steady mode witch the airfoil is 
stationary and the air flow has the speed of Mach 0.5. For 
the simulation of moving airfoil, the grid motion and the 
pressure contours at different times are shown in Fig. 5. In 
Fig. 6 the pressure distributions along the airfoil surface 
from both the steady state and moving airfoil simulation are 
compared with each other and data from ref. [5]. 

The other test case is an unsteady transonic flow over 
NACA0012 pitching airfoil is considered from the AGARD 
experimental test cases that is called CT5 case [5]. For this 
case, the periodic motion of the airfoil is defined by the 
angle of attack as a function of time as;  

0
s in ( )

m
t     

where 
m

 is the mean angle of attack, 
0
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amplitude, and   is the angular frequency of the motion 

which is related to reduced frequency k  by / 2k c U
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and U


 is the free stream velocity and c is the chord length 

of the airfoil. The flow conditions of CT5 case 
are 0814.0,51.2,016.0,755.0

0
 kM

m


 . In this 

case a strong shock wave, that develops alternatively on the 
upper and lower surface of the airfoil.  

In this case the Reynolds number is very high with no 
separation. Therefore can be suitable test for Euler equation 
solution validation. Instantaneous pressure contour and 
adapted grid with meshless zone at different phase angle are 
shown in Fig. 6. A comparison between the present results 
for pressure distributions over the airfoil by the experimental 
and numerical dates are shown in Fig. 7 for four different 
phase angle during the cycle. As is seen, the calculated 
pressure distribution is shown good agreement with 
experimental and numerical dates. The comparison of lift 
and pitching moment coefficient with experimental data are 
shown in Fig. 8. As is seen, the numerical results agree with 
the experimental and reliable numerical dates [5,6,7].  
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 Figures and drawings 

 

 
Figure 1. Schematic of point and 

its neighbors and mid=point. 

 
Figure 2. Meshless zone with its outer boundary. 

 
Figure 3. Hybrid Cartesian grid 

and meshless zones. 
 

 
(a) 

 

 
(b) 
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(d) 
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Figure 4. Geometric adaptation of the grid for moving boundaries.  
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(a) 
480m sec 

 

  

(b) 
1280m sec 

 

  

(c) 
3200m sec 

 

  

(d) 
6400 m sec 

 
Figure 4. Pressure contours and adapted grid for moving fully Eulerian and fully Lagrangian solution with Mach number 0.5. 

 
 
 

 
Figure 5. Calculated pressure coefficient distribution over NACA0012 airfoil by fully Eulerian and fully Lagrangian solution 

with Mach number 0.5. 
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Figure 6. Instantaneous pressure contour and adapted grid with meshless zone for AGARD test case CT5. 
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Figure 7. Instantaneous pressure distributions for AGARD test case CT5. 

 

 
Figure 8. Lift and moment coefficient loops for AGARD test case CT5. 
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