
International Conference on Advanced Computing, Communication and Networks’11

268

 Testing the Target system

 Vijayalakshmi K Rajanikanth

 vijaya210@gmail.com rajanikanth@msrit.edu

Department of Information Science & Engineering

M S Ramaiah Institute of Technology, Bangalore

Abstract
 An embedded system consists of

heterogeneous layers including hardware, HAL

(Hardware Abstraction Layer), OS kernel and

application layer. Interactions between these

layers are the software interfaces to be tested in

an embedded system. The identified interfaces are

important criterion that selects test cases and

monitors the test results in order to detect faults

and trace their causes. Because embedded systems

commonly have slow processor and small

memory, embedded software must be more

efficient and compact against the poor resource.

In this paper I discuss some of the tools used to

test the target board (embedded system) using host

system and propose my tool to write the scripts

and detect the defects in the target board. Tool is

called as Card Advanced Research Tool (CART)

which run on host system.

Index Terms- Card Advanced Research Tool

(CART), Target board, host system, firmware,

Multimedia card (MMC).

1. Introduction

Presence of the Ubiquitous, ‘Embedded,

Everywhere’ from the cell phones to D-TV makes

the embedded systems rapidly widespread in real

life. Embedded software occupies around 10~20%

of embedded systems. More than 80% of the

system faults are caused by not hardware but

embedded software. Considering the trend of

increase in embedded software, its problems are

no longer considered as a simple software fault.

Therefore, the embedded software test becomes

very important [1].

Furthermore, the importance of software in

the embedded system’s market has an impact on

testing. Time-to-market and quality become major

competing factors. It means that more and more

complex software has to be developed at a high

quality level in less time. A well- structured test

process alone is not sufficient to fulfil quality

demands within stipulated time. With the proper

use of test tool, the faster testing with good quality

is possible [1].

As an embedded system generally offers less

computing resources than a general-purpose

computer system does, developers make every

effort to improve the quality of their embedded

software and make it to always have a good

performance in resource usage. To do this,

developers occasionally use embedded software

evaluation tools to increase development

efficiency for embedded software. With a software

evaluation tool, developers get to know whether

the developed software is efficiently optimized for

embedded system’s restricted resources [2].

Recent trend shows that embedded software is

tested via a debugger equipped from the

simulator/emulator or a test tool to measure the

performance of entire embedded system. Each of

the case has some limitations to test embedded

software.

Firstly, in order to detect a fault, the

debugger allows software engineers to set a break

point, determine a symbol to be monitored and

decide ‘pass’ or ‘fail’ of a test result. If software

engineers are not quite experienced in testing or

they do not know the architecture of entire

embedded system then they cannot execute the ad-

hoc testing by trial and error. They take more time

to test, and they cannot confirm whether the test

was completed reliably and the fault evaluation

has been performed properly.

Secondly, in order to solve the hardware

dependency for embedded software testing, the

test tool should support the test environment such

as a simulator, an emulator, and a real target. The

test tool focuses to automate the test execution

based on the test environment. A good test tool

should support the labour-intensive tasks such as

the test execution and the technology-intensive

International Conference on Advanced Computing, Communication and Networks’11

269

tasks including test item identification, test case

selection and test result analysis oriented to

embedded software. In order to help the software

engineer, a test tool should support above

mentioned tasks.

Thirdly, they started using the tool which

run from the host system to detect the defects in

the target board. The output they could see from

the host system itself. The limitation is serial

communication resulted in slower execution

speed.

Many test tools have limitations to

analyze and test the internal features of embedded

software that is tightly coupled with OS,

middleware, device driver and target hardware. To

analyze the interfaces between the heterogeneous

layers is very important to the embedded software

testing. As it is impossible to test embedded

software independently, it is to be tested on the

entire embedded system. Testing the entire

embedded system is difficult to detect the

potential software fault, its location and cause.

Therefore, the interface test of embedded software

is important to identify the fault location.

In this paper, I propose an automated tool

to test the embedded software (called as firmware)

on the target board. This tool shows the results of

test cases that run in target board on the host

system and provides user, efficient and friendly

environment to test and detect the defects in the

MMC/SD attached to the target board.

2. System Design

The System composed of many layers

which can be divided among host side and target

side. [3]

2.1 Graphical User Interface: This layer

provides a user interface through which user can

access the complete functionality of the tool. A

GUI represents the information and actions

available to user through graphical icons and

visual indicators, instead of text based

commands. GUI provides user-friendly

environment, where novice user can learn the

features easily.

2.2 Interpreter: Interpreter supports C language

grammar. All system APIs are declared in this

layer. Scripts written in GUI to test the firmware

will be interpreted into the form that is

understandable to the next layer. Language’s data

type conversion complies with standard C and

allows user to do type conversion. Scope of

variables defined is within the script and all un-

initialized variables have integer ‘0’ as initial

data.

2.3 Device Manager: The main

functionality of the device manager is to select

either the SD module or MMC module

depending on the device selected.

2.4 System API: Script cannot define or

declare functions. Instead, CART provides

predefined functions called as System APIs. APIs

are defined in this layer, but declaration must be

there in interpreter layer. There are 2 type of

system APIs:

 CART Board control APIs: API that send

command to and get response from CART target

Board. These APIs need communication with a

device through USB and the Board. These APIs

are MMC specific commands and cannot change

the structure and functioning.

 CART PC control APIs: CART control

API is the function that need not communicate to

the target board. These API will be used by user

to get PC control command. These APIs are

system APIs can be defined by developer and can

change the structure and function as he needs.

2.5 USB Interface layer: This layer will

provide the USB interface for API to

communicate to target board. Similar module

Graphical user

interface

Interpreter

Device

Manager

System API

layer

USB interface layer

USB interface layer

Firmware

MMC/SD cards

MMC

API

SD API

Log window

Host side

Target side

Fig 1: Block diagram

International Conference on Advanced Computing, Communication and Networks’11

270

will execute on the target board which will

communicate with the host PC.

2.6 Firmware: This module will control the

complete board. The firmware will be modified

to add the functionality of the SD, MMC and

USB support. This firmware is loaded into the

target board via binary file.

2.7 Call flow for command API

Fig 2 shows the call flow of the commands,

from GUI to target board. Once GUI

recognizes commends it will send it to

interpreter for declaration of the command.

Once commands are found in interpreter

layer, it will check the definition of API in

system API layer. From API layer command

checked in target side, ie. in USB interface

layer and target (MMC).

3. Testing the target board using

CART

3.1 Writing scripts

 CART tool provides user-friendly

interface from the host system. When application

is launched, user should download the firmware

into the target board using binary file. Once

firmware is downloaded, host system can be

connected to target using USB interface. Once

USB connected status shown users can write the

scripts and should save the scripts with .c

extension in preferred folder.

From the host, user should write the

script which contains commands supported by

MMC 4.41 specification. The target (IVY) board

is connected to host PC and through the USB

interface. When application run the script from

GUI, commands will be executed from target

firmware and the result can be seen in host

system. Step by step execution of the commands

can be seen in the host system, and errors can be

traced.

3.2 Testing scripts

Test scripts supports C language constructs

and system specific Application Program

Interfaces (APIs).

Script language supports C data types, structures

and arrays. Script uses cart pre-processors. Script

editor has the features of syntax colouring,

parenthesis matching. Scripts are saved with .c

extension, and can run as single or in a group. One

script can be imported in other script file using

SCRIPT API with filename as argument.

4. Conclusion

CART provides faster communication

speed with target board. Users are allowed to write

Fig 3: CART System

Fig 4: CART running in host system

Fig 2: Cal flow for command API

GUI Interpreter System

API layer

USB

interface

layer

Target

CMD0

(ARG) CMD0

(ARG)
CMD0

(ARG) CMD0

(ARG)

CMD0

OUTPUT CMD0

OUTPUT
CMD0

OUTPUT

CMD0

OUTPU

T

CMD0

OUTPUT

International Conference on Advanced Computing, Communication and Networks’11

271

the test cases and execute the test cases using

single tool. This avoids user searching for

different tools and learning the user interface of

tool for writing scripts and executing scripts. Tool

supports both MMC and SD cards, test cases

written will run in similar way in both the cards.

User can load the tool with minimum hardware

configuration on host system provided with target

board, MMC and USB connection.

5. References

[1] Jooyoung Seo, Ahyoung Sung, Byoungju Choi,

Sungbong Kang, “Automating Embedded

Software Testing on an Emulated Target Board”,

„Second International Workshop on Automation of

Software Test‟, IEEE 2007

[2]Dongkyu Kwack, Yongyun Cho, Jaeyoung

Choi, Chae-Woo Yoo, “A XML-based Testing

Tool for Embedded Softwares”, IEEE

2007international conference on multimedia and

ubiquitous Engineering.

[3] Design document and programmers guide of

CART.

[4] Link: http://ezinearticles.com/?How-to-

Evaluate-Embedded-Software-Testing-

Tools&id=4920001

