
International conference on Advanced Computing, Communication and Networks’11

896

Illustration of Timestamp Ordering in Controlling

Concurrency in Distributed Database

Rinki Chauhan,

Department of CSE

 MRIU, Faridabad

iknirs@gmail.com,

Preeti Bhati

Department of CSE

 MRIU, Faridabad

versatilepreeti1986@yahoo.com

Abstract—A distributed database consists of different

number of sites which are interconnected by a communication

network. In this environment in absence of proper

synchronization among different transaction may lead to

inconsistency of databases. In this paper we are going to

discuss various timestamp ordering algorithms for

concurrency control. These algorithms are also illustrated with

an example.

Keywords—transaction, concurrency control, timestamp,

distributed database

I. INTRODUCTION

Distributed database systems (DDBS) are systems that

have their data distributed and replicated over several

locations or sites unlike centralized databases where one

copy of the data is stored. Both types of databases have same

problem of access control, such as concurrent user access.

Concurrency control is a method of managing concurrent
access of transactions on a particular data item such that the
consistency of the database is maintained. Consistency
means when any transaction comes for execution the
database is in consistent state and when it leaves the system
the database should be in consistent state. Also, the result
produced by the transaction should be correct. This problem
becomes complex in distributed databases since the data is
not stored at one place. The user can access the data from
any site and the controlling mechanism at other site may not
recognize it instantly. Various algorithms have been
designed for controlling concurrency of the database.

The notion of a transaction is of fundamental importance
to concurrency control. In a distributed database
environment, a transaction may access data stored at more
than one site. Each transaction is divided into a number of
sub-transactions, one for each site at which data accessed by
the transaction is stored.

II. DISTRIBUTED TRANSACTION-PROCESSING

MODEL

For understanding how a concurrency control algorithm
operates we present a simple model of Distributed Database
Management System in this section in Fig. 1. A distributed
database management system(DDBMS) is a collection of
sites interconnected by a network.

Figure. 1. DDBMS Transaction Processing Model

 Each site running on one or both of the following software
modules: a transaction manager (TM) and data managers
(DM). TM supervises the interactions between users and
DDBMS while DMs manage the actual database. Here, the
communication network is considered to be reliable. This
means that if site A sends a message to site B that message
reaches to site B without any error or vice-versa.

III. TRANSACTION SYNCHRONIZATION BASED

ON TIMESTAMP ORDERING

Locking algorithms are considered best for concurrency
control in a database. But locking algorithms may lead to
deadlock situations in some cases which will require
deadlock detection, prevention and avoidance mechanisms.
Such complications are eliminated in timestamp ordering
algorithms. In timestamp ordering [2], we use a unique
identifier called timestamp assigned by the Transaction
Manager to each transaction for execution. The TM attaches
the timestamp to all dm-reads and dm-writes issued on
behalf of the transaction. DMs process conflicting operations
in the timestamp order.

Stored

Data

DM1

TM1

DM2 DMn

TM2 TMn

Stored

Data

Stored

Data

Site 1 Site 2 Site n

T1..…Tn T1..…Tn T1..…Tn

mailto:iknirs@gmail.com

International conference on Advanced Computing, Communication and Networks’11

897

Operations are conflicting if they are accessing the same
data item and one of them is a write operation. Thus there
are two kinds of synchronizations needed: read-write (rw)
synchronization and write-write (ww) synchronization.

In rw synchronization, both the operations are trying to
access the same data item and one of them is write operation
and the other one is a read operation.

In ww synchronization, both the operations are trying to
access the same data item and both of them are write
operation.

A. Implementation of Basic Timestamp Ordering

Basic T/O[4,5] is quite simple. For every data item at
every DM there is a timestamp maintained which is the
largest timestamp of the transaction (dm read or dm write)
which has last used the data item. They are called as the read
and write timestamps if the transactions are dm read and dm
write respectively.

In rw synchronization, if a dm read comes with read
operation on data item x denoted as r(x) with a timestamp
TS then check if TS is greater than the write timestamp of x
or not, i.e. TS>Wts(x). If TS is smaller, then abort the
issuing transaction otherwise accept and execute r(x) and set
the read timestamp of x as timestamp greater than between
TS and Rts(x)(i.e. read timestamp of x). Similarly, if a dm
write comes with a write operation on a data item x denoted
as w(x) with a timestamp TS then check TS>Rts(x). If TS is
smaller, then abort the issuing transaction else accept and
execute w(x) and set the write timestamp of x as greater
between TS and Wts(x).

In ww synchronization if a dm write arrives for a data
item x with a timestamp TS where TS<Wts(x) then the write
is ignored else the dm write is accepted and the timestamp of
x is set as TS.

B. Multiversion T/O

In Multiversion Timestamp ordering[2,5], instead of
maintain a largest timestamp for every data item we
maintain a set of read timestamps and a set of write
timestamps called as versions.

In rw synchronization, if a dm read arrives on a data item
x with a timestamp TS then the largest write timestamp or
version of x is searched which is less than the TS. This
version is read by that dm read and a new read timestamp,
TS is added to the set of read timestamps of x. Similarly, if a
dm write comes on a data item x with a timestamp TS then
interval from TS to the smallest version of x greater than TS
is searched, if in that interval any read timestamp of x lies
then the dm write is rejected else it is executed and a new
version of x is created as TS.

In ww synchronization, a dm write creates a new version
of timestamp and is never rejected.

C. Conservative T/O

This algorithm[5,7] is used to minimize the number of
restarts. If any operation arrives which can cause a restart in
future is delayed until no restarts are possible in future.

Each site maintains several pairs of queues, one read
queue and one write queue in timestamp order for every site
in the network. Each read queue contains requests for read
operations on local data from transaction originating at a
remote site, while each write queue maintains the same
information for update requests. Individual read and update
requests are labeled with the timestamp of the transactions
which issued them.

If a site B issues a dm read request to the data manager at
site A. DM at site A will insert the request in its read queues
at proper place according to the timestamp. The read
operation by the DM at A after checking and ensuring that
there is no operation in the queue having a younger
timestamp. If any such operation is present then the read
request will have to wait until its timestamp becomes the
youngest one.

Same goes for the write operation. Any dm write coming
from site B at site A will be placed in the write queue of site
A as per the timestamp of the operation. After checking that
the write queue at the data manager is not empty and the
timestamp of the write request is the youngest one, the
request is executed else the request has to wait until it
becomes the youngest one. If the queue is empty then a null
request can be sent from the site.

The drawback with this algorithm is that that a site
blocked due to an empty queue could issue a request having
a smaller timestamp later.

IV. EXAMPLE

In our example we have taken a scenario in which there

are three sites on which three data items(a, b and c) are
stored a at site1, b at site2 and c at site3 respectively.

Three transactions are issued as mentioned below:

T1 : r1(a)r1(b)w(b) at site 1 having timestamp 1

T2 : r2(b)w2(b) at site 2 having timestamp 2

T3 : r3(c)w3(c)r3(a)w3(a) at site 3 having timestamp 3

Now, for executing T1 it has to be divided into two
subtransactions by transaction manager namely :-

T11 : r1(a) to be executed by the DM at site 1 and

T12 : r1(b)w(b) to be executed by the DM at site 2

T2 will get executed at site 2 and T3 will again be
divided into two subtransactions namely :-

T31 : r3(c)w3(c) to be executed by the DM at at site 3
and

T32 : r3(a)w3(a) to be executed by the DM at at site 1

Now as per the timestamps issued, the transactions to be
executed at site 1, site 2 and site 3 are :-

International conference on Advanced Computing, Communication and Networks’11

898

At site 1 : r1(a)r3(a)w3(a),

At site 2 : r2(b)w2(b)r1(b)w1(b),

At site 3 : r3(c)w3(c) respectively.

In basic timestamping algorithm, if the data item a is
having its read timestamp as 1 and write timestamp as 1,
data item b is having its read timestamp as 2 and write
timestamp as 1 and the data item c is having its read
timestamp as 3 and write timestamp as 2.

At site 1 write timestamp of a is not greater than the
timestamp of the dm-read of site1 so it will get executed but
since the timestamp of the dm read same as the read
timestamp of the data item a so the read timestamp of a will
remain 1 only. Now, for r3(a) the timestamp of the dm-read
is 3 and the write timestamp of a is 1 so it will also get
executed and since the read timestamp of a is less than
timestamp of dm-read so the read timestamp of a will now
become 3. Now, for w3(a) the timestamp of dm-write is not
less than the read timestamp of a i.e. 3. Also, the write
timestamp of a is also not greater than the timestamp of dm-
write so it will get executed and the write timestamp of a
will become 3.

At site2 timestamp of dm-read is not less than the write
timestamp of the data item b so it will get executed and the
read timestamp of the data item will remain 2. For w2(b) the
timestamp of dm-read is not less than the read timestamp of
the data item b and also, the write timestamp of the data item
is less than the timestamp of the dm-write so it will get
executed and the write timestamp of the data item will
become 2. r1(b) will get aborted since its timestamp is less
than the write timestamp of the data item b. similarly, w1(b)
will also get rejected since its timestamp is less than the read
timestamp of b.

At site 3 r3(a) will get executed since its timestamp is not
less than the write timestamp of data item c and the read
timestamp of c will remain 3. Also, w3(c) will be executed
since the timestamp of the dm write is not less than the read
timestamp of the data item. Also, the write timestamp of c is
less than the timestamp of the dm-write. So, write timestamp
of c will now become 3.

In multiversion timestamping algorithm, if the set of read
timestamps of data item a are 3,5 and 6 and different
versions of a at site 1 are 0, 1, 2, 4and 6. At site 2 the set of
read timestamps of data item b are 0 and 6 and different
versions of b are 0, 1, 3, 4and 5. At site 3 the set of read
timestamps of data item c are 1, 3,5 and 6 and different
versions of c are 1, 2, 4, 5and 6.

At site 1 r1(a) will get executed and will get the value of
a at version zero. Also, a new read timestamp will be
created. Now r3(a) will also get executed and will read the
value of a at version 2 thereby creating a new read
timestamp 3. w3(a) will not be executed since there lies read
timestamps of a between the interval of 3-6.

At site 2 r2(b) gets executed and will get to read the
value at version 1 and will be creating a timestamp 2. w2(b)

will be executed since there is no read timestamp between
the interval 2-5. r1(b) will get executed thereby creating a
new read timestamp 1 and will get to read the value at
version 0. w1(b) will be executed since there is no read
timestamps between interval 1-5

At site 3 r3(c) gets executed and will read the value at
version 2 and will create a new read timestamp 2. w3(c) will
not be executed since there are many read timestamps
between interval 3-6.

In conservative timestamping, every transaction manager
will maintain a queue for every site and execute them in
increasing order of the timestamps. So, transaction manager
at site 1 will have r1(a) in queue Q11 r3(a)w3(a) in queue
Q13. TM at site 2 will have r1(b)w1(b) in Q21 and
r2(b)w2(b) in Q22 and at site 3 TM will have r3(c)w3(c) in
Q33.

At site 1 since r1(a) is having smallest timestamp so it
will be executed first then r3(a)and w3(a) will be executed.

At site 2 r1(b) is having the youngest timestamp so it will
be executed first followed by w1(a) then r2(b) and then
w2(b) will get executed.

At site 3 first of all r3(c) will execute and then w3(c) will
be executed.

V. CONCLUSION

In this paper, we have presented a distributed transaction

processing model. We have discussed almost all types of
timestamp ordering algorithms for concurrency control in
distributed databases. We have considered the problem of
deadlocks faced by the locking algorithms which is
eliminated in timestamp ordering algorithms.

We have left one important issue as performance. The
performance factor of concurrency control algorithms
depends on system throughput and transaction response time

The performance analysis of algorithm still remains to be
discussed. We hope, and really recommend, that our future
work on distributed concurrency control will concentrate on
the performance of algorithms.

REFERENCES

[1] C. J. Bouras P. G. Spirakis ”Performance Models for Perfect and

Imperfect Clocks on Timestamp Ordering in Distributed Databases”
MASCOTS '93 Proceedings of the International Workshop on

Modeling, Analysis, and Simulation On Computer and
Telecommunication Systems

 [2] F. Bukhari and Sylvia L. Osborn “Two Fully Distributed

Concurrency Control Algorithms” IEEE TRANSACTIONS ON

KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 5,
OCTOBER 1993

 [3] Li Victor O. K., “Performance Models of Timestamp Ordering

Concurrency Control Algorithms in Distributed Databases”, IEEE
Transactions on Computers, Vol. C–36, No. 9, September 1987, pp.

1041– 1051

International conference on Advanced Computing, Communication and Networks’11

899

[4] Singal M. , “Performance analysis of the basic timestamp ordering

algorithm via Markov modelling”, Performance Evaluation 12(1991),
pp 17–41

[5] Tamer Ozsu “Principles of Distributed Database Systems” Prentice
Hall 1999.

[6] UGUR HALICI and ASUMAN DOGAC “Concurrency Control in

Distributed Databases Through Time Intervals and Short-Term
Locks” IEEE TRANSACTIONS ON SOFTWARE ENGINEERING.

VOL. 15. NO. 8 AUGUST 1989.

[7] Wang C., Li V., “Queueing analysis of the conservative timestamp

ordering concurrency control algorithm”, Proceeding IEEE

International Computing Symposium 1986, pp. 1450–1455

