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Abstract—A distributed database consists of different 

number of sites which are interconnected by a communication 

network. In this environment in absence of proper 

synchronization among different transaction may lead to 

inconsistency of databases. In this paper we are going to 

discuss various timestamp ordering algorithms for 

concurrency control. These algorithms are also illustrated with 

an example.  
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I.  INTRODUCTION 

Distributed database systems (DDBS) are systems that 

have their data distributed and replicated over several 

locations or sites unlike centralized databases where one 

copy of the data is stored. Both types of databases have same 

problem of access control, such as concurrent user access. 

Concurrency control is a method of managing concurrent 
access of transactions on a particular data item such that the 
consistency of the database is maintained. Consistency 
means when any transaction comes for execution the 
database is in consistent state and when it leaves the system 
the database should be in consistent state. Also, the result 
produced by the transaction should be correct. This problem 
becomes complex in distributed databases since the data is 
not stored at one place. The user can access the data from 
any site and the controlling mechanism at other site may not 
recognize it instantly. Various algorithms have been 
designed for controlling concurrency of the database. 

The notion of a transaction is of fundamental importance 
to concurrency control. In a distributed database 
environment, a transaction may access data stored at more 
than one site. Each transaction is divided into a number of 
sub-transactions, one for each site at which data accessed by 
the transaction is stored. 

II. DISTRIBUTED TRANSACTION-PROCESSING 

MODEL    

For understanding how a concurrency control algorithm 
operates we present a simple model of Distributed Database 
Management System in this section in Fig. 1. A distributed 
database management system(DDBMS) is a collection of 
sites interconnected by a network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

Figure. 1. DDBMS Transaction Processing Model 

 
 Each site running on one or both of the following software 
modules: a transaction manager (TM) and data managers 
(DM). TM supervises the interactions between users and 
DDBMS while DMs manage the actual database. Here, the 
communication network is considered to be reliable. This 
means that if site A sends a message to site B that message 
reaches to site B without any error or vice-versa. 

III.    TRANSACTION SYNCHRONIZATION BASED 

ON TIMESTAMP ORDERING 

Locking algorithms are considered best for concurrency 
control in a database. But locking algorithms may lead to 
deadlock situations in some cases which will require 
deadlock detection, prevention and avoidance mechanisms. 
Such complications are eliminated in timestamp ordering 
algorithms. In timestamp ordering [2], we use a unique 
identifier called timestamp assigned by the Transaction 
Manager to each transaction for execution. The TM attaches 
the timestamp to all dm-reads and dm-writes issued on 
behalf of the transaction. DMs process conflicting operations 
in the timestamp order. 
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Operations are conflicting if they are accessing the same 
data item and one of them is a write operation. Thus there 
are two kinds of synchronizations needed: read-write (rw) 
synchronization and write-write (ww) synchronization. 

In rw synchronization, both the operations are trying to 
access the same data item and one of them is write operation 
and the other one is a read operation. 

In ww synchronization, both the operations are trying to 
access the same data item and both of them are write 
operation. 

A. Implementation of Basic Timestamp Ordering 

Basic T/O[4,5] is quite simple. For every data item at 
every DM there is a timestamp maintained which is the 
largest timestamp of the transaction (dm read or dm write) 
which has last used the data item. They are called as the read 
and write timestamps if the transactions are dm read and dm 
write respectively. 

In rw synchronization, if a dm read comes with read 
operation on data item x denoted as r(x) with a timestamp 
TS then check if TS is greater than the write timestamp of x 
or not, i.e. TS>Wts(x). If TS is smaller, then abort the 
issuing transaction otherwise accept and execute r(x) and set 
the read timestamp of x as timestamp greater than between 
TS and Rts(x)(i.e. read timestamp of x). Similarly, if a dm 
write comes with a write operation on a data item x denoted 
as w(x) with a timestamp TS then check TS>Rts(x). If TS is 
smaller, then abort the issuing transaction else accept and 
execute w(x) and set the write timestamp of x as greater 
between TS and Wts(x). 

In ww synchronization if a dm write arrives for a data 
item x with a timestamp TS where TS<Wts(x) then the write 
is ignored else the dm write is accepted and the timestamp of 
x is set as TS. 

B. Multiversion T/O 

In Multiversion Timestamp ordering[2,5], instead of 
maintain a largest timestamp for every data item we 
maintain a set of read timestamps and a set of write 
timestamps called as versions. 

In rw synchronization, if a dm read arrives on a data item 
x with a timestamp TS then the largest write timestamp or 
version of x is searched which is less than the TS. This 
version is read by that dm read and a new read timestamp, 
TS is added to the set of read timestamps of x. Similarly, if a 
dm write comes on a data item x with a timestamp TS then 
interval from TS to the smallest version of x greater than TS 
is searched, if in that interval any read timestamp of x lies 
then the dm write is rejected else it is executed and a new 
version of x is created as TS. 

In ww synchronization, a dm write creates a new version 
of timestamp and is never rejected.  

C. Conservative T/O 

This algorithm[5,7] is used to minimize the number of 
restarts. If any operation arrives which can cause a restart in 
future is delayed until no restarts are possible in future.  

Each site maintains several pairs of queues, one read 
queue and one write queue in timestamp order for every site 
in the network. Each read queue contains requests for read 
operations on local data from transaction originating at a 
remote site, while each write queue maintains the same 
information for update requests. Individual read and update 
requests are labeled with the timestamp of the transactions 
which issued them.  

If a site B issues a dm read request to the data manager at 
site A. DM at site A will insert the request in its read queues 
at proper place according to the timestamp. The read 
operation by the DM at A after checking and ensuring that 
there is no operation in the queue having a younger 
timestamp. If any such operation is present then the read 
request will have to wait until its timestamp becomes the 
youngest one. 

Same goes for the write operation. Any dm write coming 
from site B at site A will be placed in the write queue of site 
A as per the timestamp of the operation. After checking that 
the write queue at the data manager is not empty and the 
timestamp of the write request is the youngest one, the 
request is executed else the request has to wait until it 
becomes the youngest one. If the queue is empty then a null 
request can be sent from the site. 

The drawback with this algorithm is that that a site 
blocked due to an empty queue could issue a request having 
a smaller timestamp later.  

IV. EXAMPLE 

 
In our example we have taken a scenario in which there 

are three sites on which three data items(a, b and c) are 
stored a at site1, b at site2 and c at site3 respectively. 

Three transactions are issued as mentioned below: 

T1 : r1(a)r1(b)w(b) at site 1 having timestamp 1 

T2 : r2(b)w2(b) at site 2 having timestamp 2 

T3 : r3(c)w3(c)r3(a)w3(a) at site 3 having timestamp 3 

Now, for executing T1 it has to be divided into two 
subtransactions  by transaction manager namely :- 

T11 : r1(a) to be executed by the DM at site 1 and  

T12 : r1(b)w(b) to be executed by the DM at site 2 

T2 will get executed at site 2 and T3 will again be 
divided into two subtransactions namely :- 

T31 : r3(c)w3(c) to be executed by the DM at at site 3 
and 

T32 : r3(a)w3(a) to be executed by the DM at at site 1 

Now as per the timestamps issued, the transactions to be 
executed at site 1, site 2 and site 3 are :- 
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At site 1 : r1(a)r3(a)w3(a),  

At site 2 : r2(b)w2(b)r1(b)w1(b), 

At site 3 : r3(c)w3(c) respectively. 

In basic timestamping algorithm, if the data item a is 
having its read timestamp as 1 and write timestamp as 1, 
data item b is having its read timestamp as 2 and write 
timestamp as 1 and the data item c is having its read 
timestamp as 3 and write timestamp as 2. 

At site 1 write timestamp of a is not greater than the 
timestamp of the dm-read of site1 so it will get executed but 
since the timestamp of the dm read same as the read 
timestamp of the data item a so the read timestamp of a will 
remain 1 only. Now, for r3(a) the timestamp of the dm-read 
is 3 and the write timestamp of a is 1 so it will also get 
executed and since the read timestamp of a is less than 
timestamp of dm-read so the read timestamp of a will now 
become 3. Now, for w3(a) the timestamp of dm-write is not 
less than the read timestamp of a i.e. 3. Also, the write 
timestamp of a is also not greater than the timestamp of dm-
write so it will get executed and the write timestamp of a 
will become 3. 

At site2 timestamp of dm-read is not less than the write 
timestamp of the data item b so it will get executed and the 
read timestamp of the data item will remain 2. For w2(b) the 
timestamp of dm-read is not less than the read timestamp of 
the data item b and also, the write timestamp of the data item 
is less than the timestamp of the dm-write so it will get 
executed and the write timestamp of the data item will 
become 2. r1(b) will get aborted since its timestamp is less 
than the write timestamp of the data item b. similarly, w1(b) 
will also get rejected since its timestamp is less than the read 
timestamp of b. 

At site 3 r3(a) will get executed since its timestamp is not 
less than the write timestamp of data item c and the read 
timestamp of c will remain 3. Also, w3(c) will be executed 
since the timestamp of the dm write is not less than the read 
timestamp of the data item. Also, the write timestamp of c is 
less than the timestamp of the dm-write. So, write timestamp 
of c will now become 3.  

In multiversion timestamping algorithm, if the set of read 
timestamps of data item a are 3,5 and 6 and different 
versions of a at site 1 are 0, 1, 2, 4and 6. At site 2 the set of 
read timestamps of data item b are 0 and 6 and different 
versions of b are 0, 1, 3, 4and 5. At site 3 the set of read 
timestamps of data item c are 1, 3,5 and 6 and different 
versions of c are 1, 2, 4, 5and 6. 

At site 1 r1(a) will get executed and will get the value of 
a at version zero. Also, a new read timestamp will be 
created. Now r3(a) will also get executed and will read the 
value of a at version 2 thereby creating a new read 
timestamp 3. w3(a) will not be executed since there lies read 
timestamps of a between the interval of 3-6. 

At site 2 r2(b) gets executed and will get to read the 
value at version 1 and will be creating a timestamp 2. w2(b) 

will be executed since there is no read timestamp between 
the interval 2-5. r1(b) will get executed thereby creating a 
new read timestamp 1 and will get to read the value at 
version 0. w1(b) will be executed since there is no read 
timestamps between interval 1-5 

At site 3 r3(c) gets executed and will read the value at 
version 2 and will create a new read timestamp 2. w3(c) will 
not be executed since there are many read timestamps 
between interval 3-6. 

In conservative timestamping, every transaction manager 
will maintain a queue for every site and execute them in 
increasing order of the timestamps. So, transaction manager 
at site 1 will have r1(a) in queue Q11 r3(a)w3(a) in queue 
Q13. TM at site 2 will have r1(b)w1(b) in Q21 and 
r2(b)w2(b) in Q22 and at site 3 TM will have r3(c)w3(c) in 
Q33. 

At site 1 since r1(a) is having smallest timestamp so it 
will be executed first then r3(a)and w3(a) will be executed. 

At site 2 r1(b) is having the youngest timestamp so it will 
be executed first followed by w1(a) then r2(b) and then 
w2(b) will get executed. 

At site 3 first of all r3(c) will execute and then w3(c) will 
be executed. 

V. CONCLUSION 

 
In this paper, we have presented a distributed transaction 

processing model. We have discussed almost all types of 
timestamp ordering algorithms for concurrency control in 
distributed databases. We have considered the problem of 
deadlocks faced by the locking algorithms which is 
eliminated in timestamp ordering algorithms. 

We have left one important issue as performance. The 
performance factor of concurrency control algorithms 
depends on system throughput and transaction response time 

The performance analysis of algorithm still remains to be 
discussed. We hope, and really recommend, that our future 
work on distributed concurrency control will concentrate on 
the performance of algorithms. 
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