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Abstract—Boundary searches were introduced in 
pathfinding aiming to find a middle-ground between memory 
intensive algorithms such as the A* search algorithm and the 
cycle redundancy of iterative-deepening algorithms such as the 
IDA*. Boundary search algorithms allocate a small memory 
footprint during runtime to store frontier nodes between each 
iteration to reduce redundancy, while expanding nodes in the 
same manner as iterative-deepening algorithms. The boundary 
search algorithm fringe search is an informed search algorithm 
derived from the IDA* for use in known environments. This 
paper proposes the boundary iterative-deepening depth-first 
search (BIDDFS) algorithm, which fills the gap made by the 
fringe search for uninformed search algorithms. The BIDDFS 
is optimised to perform blind searches in unknown 
environments, where simulation experiments found that it is up 
to more than 3 times faster than standard uninformed 
iterative-deepening algorithms. 

Keywords—pathfinding, uninformed search, iterative-
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I.  INTRODUCTION 

Pathfinding in computing is often described as the 
plotting by a computer application to find the best route 
between two points. In everyday life, a pathfinder generally 
finds routes between points in a physical environment such 
as a landscape, a map or a terrain. Pathfinding results are 
most often used in navigation. This often results in 
movement between the points on the route. Furthermore, due 
to the ubiquitous requirements for pathfinding, it is worth 
implying that pathfinding is supposed to generate an 
optimum route, although there are often factors that also 
prevent it from achieving so, such as computer limitations 
and terrain difficulties. 

According to [1], the efficiency of a pathfinding 
algorithm can be classified to its completeness, where it is 
guaranteed to a route solution if it exists; its optimality, 
where it is able to provide the optimal solution; its time 
complexity, for how much time is taken for pathfinding; and 
its space complexity, for the amount of memory required to 
compute a route. 

Pathfinding algorithms are classified into uninformed and 
informed search [1]. An informed search performs in an 
environment where its location information is known; this 
means that the algorithm is able to use this location 
information to identify the paths and obstacles of an 
environment (heuristics). On the other hand, uninformed 
searches are performed where environmental data is not 
known. The computing of the route uses forward planning, 
where it anticipates data from future iterations (aka blind 
search), Uninformed search algorithms often need to 
discover the environment before a proper path can be defined 
[2]. This is the cause of it being less efficient than the 
informed search since paths can be chosen that will not 
eventually lead to the ending point. An informed search will 
not encounter this problem. 

With regards to the more well-known pathfinding 
algorithms, they are often considered to be flexible and 
efficient. Algorithms such as the A* (pronounced “A-star”) 
search algorithm [3] and the Dijkstra‟s shortest path 
algorithm [4] are often used interchangeably in situations, 
depending on the requirements that the current situation 
holds, as both algorithms, along with other unmentioned 
algorithms are made to cater for different pathfinding 
scenarios. 

Starting with the A* algorithm, it is considered to be one 
of the most established and well-known pathfinding 
algorithms around. Its flexibility and capability to compute 
the optimum route is highly favoured, this is also balanced 
with its high performance capability that is contributed by its 
improvements over older algorithms such as the greedy 
algorithm, and the Dijkstra‟s algorithm. 

General pathfinding algorithms such as the Dijkstra‟s 
algorithm and the A* search algorithm performs well in 
many situations, but suffers from memory issues especially 
when faced with larger maps. From here, an iterative-
deepening search was introduced to the algorithms, 
transforming them into the iterative-deepening depth first 
search (IDDFS) [1] and the Iterative-deepening A* (IDA*) 
[5] search algorithm. Iterative-deepening searches are 
intended to give the search algorithm a significantly smaller 
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memory footprint, often but not necessarily, at the expense of 
a longer runtime. 

To achieve a balanced compensation between runtime 
speed and memory consumption, the fringe search was 
introduced, deriving from the IDA* search algorithm. Based 
on the specifications of the fringe search and the original 
IDDFS algorithm, a new algorithm was proposed to 
accommodate fringe searching in uninformed environments, 
dubbed the Boundary IDDFS (BIDDFS), for the word 
„boundary‟ provides a more accurate representation of the 
search algorithm. 

Six search algorithms were identified for this research 
with increasing depth and complexity. These algorithms are 
categorised into uninformed and informed searches, iterative 
deepening searches, and fringe searches [6], as illustrated in 
Table I. 

TABLE I: PATHFINDING ALGORITHMS 

 Uninformed Informed 

Pathfinding Dijkstra‟s A*, Greedy BFS 

Iterative-Deepening IDDFS IDA* 

Boundary BIDDFS Fringe Search 

For the analysis of the algorithms, each algorithm will be 
run and compared on the same, randomly generated grid map 
environment. The differences between each algorithm are 
presented in each of their logical structure. Subsequently, 
their efficiencies and memory footprint will be analysed in 
the following section. 

The term „node‟ is used rather frequently in this paper. A 
node here is defined as a single grid box from the map 
illustrations of Section V. Nodes can be made as a starting 
node (green dot), an ending node (yellow dot), or an OPEN 
or CLOSED node, where the latter will be further explained 
in the next section.  

Section II in this paper explains the iterative-deepening 
searches, and the general logic behind these algorithms. 
Section III describes boundary searches, a subset of iterative-
deepening searches that stores boundary nodes before each 
new iteration for faster runtimes. Section IV proposes a new 
algorithm, the boundary iterative-deepening depth-first 
search algorithm, to introduce boundary searches in 
uninformed environments. Section V will involve simulation 
examples, where the BIDDFS will be compared against other 
algorithms in different map environments. Finally, Section 
VI presents the conclusion and future works.  

II. ITERATIVE-DEEPENING SEARCHES 

These algorithms were devised to address the issues of 
large memory footprints of their preceding algorithms, 
especially in large maps, where the memory requirement for 
each runtime could increase exponentially. For the 
implementation of this research, an iterative-deepening 
algorithm was identified for one each of the uninformed and 
informed search. As such, the iterative-deepening depth-first 
search (IDDFS) addresses the memory shortcomings of the 
Dijkstra‟s algorithm and likewise for the IDA* search 

algorithm addressing the memory issues of the A* search 
algorithm. 

Here, the main contribution to the large memory footprint 
of the algorithms – the OPEN and CLOSED sets of each 
node, are removed, leaving only the heuristic and cost 
information of the neighbouring, OPEN nodes. Once a node 
has been expanded, where normally a Dijkstra‟s algorithm or 
A* search algorithm implementation will update these nodes 
to a CLOSED state, iterative-deepening algorithms will not 
store any information regarding these nodes, and hence 
“forgetting” these nodes entirely, hence saving significant 
amounts of memory. 

In other words, iterative-deepening algorithms are 
implemented here as forward, progressive algorithms. By 
way of implementation, these algorithms rely on the 
existence of “thresholds”. Since it is not possible for the 
algorithm to remember the nodes it has expanded, the 
“threshold” governs the expansion boundary of each runtime, 
for the lack of memory regarding expanded nodes will lead 
to overexpansion. If a goal is not found at a specific 
threshold, the pathfinding process will terminate, the 
threshold will be increase, and the process starts again. 
Hence with the implementation of these algorithms, a double 
loop will be used – one for the standard process of the search 
algorithm, and another to increase the threshold and restart 
the runtime for each run that fails to reach the goal.  

Indeed, at each reset of the runtime with a threshold 
increment, the nodes expanded in the previous runtime must 
be expanded again. To ease explanations, the entire 
pathfinding runtime of the algorithm can be separated into 
different sub-runtimes at different thresholds. Therefore, the 
total runtime for an iterative-deepening algorithm may 
actually be greater than its predecessor algorithm, especially 
in smaller maps. Yet, when used in large environments, the 
small memory footprint of these algorithms will in fact result 
in a faster runtime than the predecessor algorithms. 

III. BOUNDARY SEARCHES 

Boundary searches were conceptualised due to the need 
of reducing the search redundancy of iterative-deepening 
search algorithms, while keeping the memory requirements 
of the algorithm low. In fact, the only known boundary 
search algorithm in literature that aims to address these 
issues is the Fringe Search algorithm. In this section, the 
word “boundary” is used instead of “fringe” to give a more 
accurate representation of the algorithm, and the minimise 
confusion between the Fringe Search and the forthcoming, 
new algorithm. 

The main idea behinds boundary searches is rather simple 
– to prevent the need of re-expanding the entire search map 
every time the algorithm resets for a threshold increment. 
Since it was mentioned that iterative-deepening searches do 
not store information regarding CLOSED nodes, and it 
simply forgets them, the proposed solution was to save the 
OPEN nodes of the last iteration into the memory before the 
algorithm resets and increase its threshold, these nodes are 
called the leaf nodes, the boundary nodes, or the frontier 
nodes. Hence, like the iterative-deepening algorithms, the 
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usage of an incremental threshold and the lack of data 
regarding expanded nodes, is still present in these 
algorithms. Furthermore, the need of storing the last OPEN 
nodes in the memory also means that boundary searches does 
indeed require a greater memory footprint than that of 
iterative-deepening algorithms. Yet, since only information 
regarding the “boundary” is stored in the memory, (unlike 
the Dijkstra‟s or A* search algorithm, which stores 
information about all expanded nodes in the memory), its 
memory footprint is still significantly lower than the A* and 
the Dijkstra‟s search algorithm. 

Performance wise, boundary searches are suitable for use 
in medium to large-scaled maps. While a single sub-runtime, 
boundary searches still performs much faster than the 
standard A* or Dijkstra‟s search algorithms. However, 
boundary searches, at a single threshold, is still slower in 
node expansion as compared to iterative-deepening searches, 
since the algorithm has to load its boundaries into the 
memory.  

Shifting perspectives onto the entire runtime however, 
boundary searches do not re-expand nodes from the 
beginning, and hence in many cases it is able to perform 
faster than iterative-deepening searches, especially in 
medium to large map environments. This means that instead 
of re-expanding the whole map at every threshold increment, 
only the boundary nodes are re-expanded. While this does 
not completely eliminate the redundancy issues in iterative 
deepening searches, these algorithms are able to keep it at a 
minimum.  

IV. BOUNDARY ITERATIVE-DEEPENING DEPTH-FIRST 
SEARCH 

The BIDDFS is a newly proposed algorithm aiming to 
address the same issues the fringe search did with the IDA*, 
this time with the IDDFS algorithm. Its main concept utilises 
the fringe search described in the previous section and it is 
modified to address the redundancy issues of the IDDFS 
algorithm. Hence, while the fringe search explores a middle-
ground between the A* and the IDA* search algorithms; the 
BIDDFS now explores the middle-ground between the 
IDDFS and the Dijkstra‟s algorithm. 

That said, the BIDDFS is an uninformed search 
algorithm, and similar to the application above, it maintains 
only the “now” list to store information of the frontier nodes. 
Essentially, while its main search procedure is a boundary 
search algorithm, its other pathfinding procedures were 
derived from the IDDFS and hence the Dijkstra‟s algorithm. 
In other words, it should be noted that first, the expansion 
pattern for this algorithm, along with the IDDFS and the 
Dijkstra‟s algorithm, should be the same, so long as the map 
and cost environment remains the same. Second, since this 
algorithm is indirectly based off the Dijkstra‟s algorithm, this 
algorithm, along with all other algorithms discussed in this 
section (except the greedy BFS) should return the same, 
shortest path back to the starting node from the goal node. 

Being an uninformed search algorithm, the BIDDFS is 
essentially a fringe search algorithm without the heuristic 
data that makes it an informed search algorithm. Like the 

fringe search, the BIDDFS also operates using a threshold to 
compensate for the lack of memory, when a sub-runtime 
reaches its boundary, the frontier nodes are saved into the 
memory and accessed when the threshold increases and the 
search process restarts. Essentially, this algorithm follows the 
procedure below: 

1. Increasing threshold by 1 
a. Calculating the cost of surrounding nodes 

from the location node. 
b. Update surrounding OPEN nodes‟ cost. 
c. Assign costs and pointers for 

neighbouring nodes. 
d. OPEN a new, neighbouring node as the 

location node, if available. Otherwise 
check for better route to it. 

2. Save frontier nodes in memory and define starting 
position. 

Hence, the pseudocode below summarises the logic 
behind the BIDDFS: 

init 

    boundary B = s 

    cache C[beginning] = (0, null) 

    for n in C, n != beginning 

        C[n] = null 

    threshold = h(start) 

    reachedgoal = false 

 

    while NOT goal=true AND B NOT empty 

        fmin = ∞ 

        for n in F, from left to right 

            (g, parent) = C[n] 

            if g > threshold 

                fmin = min(g, fmin) 

                continue 

            if n = goal 

                reachedgoal = true 

                break 

            for s in children(n), from right to left 

                g(s) = g + cost(n, s) 

                if C[s] != null 

                    (g', parent) = C[s] 

                    if g(s) >= g' 

                        continue 

                if s in B 

                    remove s from B 

                insert s in F past n 

                C[s] = (g(s), n) 

            remove n from B 

        threshold = fmin 

 

    if reachedgoal = true 

        make path from cache 

Figure 1: BIDDFS Pseudocode 

Performance wise, the BIDDFS is able to show 
significant improvements in efficiency over its predecessor, 
the IDDFS algorithm, especially in small to medium-large 
maps. This is credited to the usage of the small memory 
allocation to store information for the frontier nodes before 
the threshold increment reset process, which will be 
illustrated in section 4 below. That said, like the IDA*, the 
BIDDFS is designed to be a situational algorithm; it 
depending on the method of implementation, or may or may 
not yield better results than the algorithm it is compared to. 
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For example, if a map is small enough, a typical 
Dijkstra‟s search algorithm will be able to solve the map 
faster than the BIDDFS, due to its requirement for threshold 
resets, even on small maps. On the other hand, if a map is too 
large, the IDDFS would perform faster than the BIDDFS. 
This is because in large maps, the number of frontier nodes 
will be greater, and hence more time would be needed to 
store the large amounts of data in the memory. Though, this 
algorithm will still be faster than the Dijkstra‟s algorithm as 
it needs to save even more data into its memory.  

Then again, the method of simulation would also 
contribute rather greatly to the eventual performance of the 
algorithm. For instance, the simulation method described in 
section 4 below requires the figure to be closed and reopened 
for to clear the map. This alone undermines the ability of the 
algorithm to perform ideally as the opening and closing of 
the figure drawing the map, coupled with the need for the 
process to redraw the map, causes significant delays to the 
algorithm, and also other similar algorithms. 

All in all, the theoretical argument and purpose of this 
algorithm is to find an efficient and less redundant 
uninformed search for use in unknown environments, a 
middle-ground between the Dijkstra‟s algorithm and the 
IDDFS algorithm. Furthermore, algorithms like these are 
able to cater for dynamically changing algorithms by 
including an adjustment function to adjust the map properties 
in between thresholds, and so long as that adjusted node has 
not been expanded, it will be expanded properly as soon as it 
becomes the frontier node. Once a goal has been found, the 
algorithm will follow the same methods used in the 
Dijkstra‟s algorithm to route the resultant route from the goal 
back to the starting node. 

V. SIMULATION EXAMPLES 

The algorithms listed in Table I were analysed for their 
time and memory efficiencies. These algorithms are tested on 
the same grid map environment of varying size and number 
of obstacles. All analyses are programmed on MATLAB. 
Mapping illustrations are based on the source codes by Bob 
L. Sturm [7], which also performs route calculations. The 
IDA*, IDDFS, fringe search, and BIDDFS algorithms were 
programmed individually and independently to run on 
Strum‟s mapping framework. 

For each simulation, the map size will be determined by a 
square field of size n by n blocks, and walls will be placed at 
random blocks until it constitutes to a percentage of a map as 
determined by the wall percentage. Then, simulation results 
will be posted, starting from the original pathfinding 
algorithms, the iterative-deepening algorithms, and then the 
boundary algorithms.  

For each result set, a screen capture of the map and its 
simulation time will be recorded, noted by the algorithms‟ 
self-time feature in the MATLAB profiler. With reference to 
the screen capture of the maps, blocks of increasing blue 
hues represent the block‟s proximity to the starting node 
whilst blocks of increasing red hues represent the block‟s 
proximity to the goal node. The starting node is marked with 
a green dot and the goal node is marked with a yellow dot. 

The grey tracing connecting both the starting and goal node 
is the resulting path returned by each algorithm. Simulation 
times are obtained by clicking the “Run and Time” button on 
respective code editor windows.  Each figure in the 
following examples are screen captures of the map 
representing the search pattern of an uninformed search 
algorithm, e.g. the BIDDFS. 

With regards to the threshold of each iterative-deepening 
algorithm, the threshold is set to display during runtime 
where it is incremented after each sub-runtime that fails to 
find the goal node. This value will then be tabulated in the 
results once the runtime ends. A greater threshold means 
more nodes are expanded for pathfinding, which can also 
indicate a greater distance between the starting node and the 
goal node. 

All simulations are performed using the 64-bit version of 
Mathworks MATLAB R2012b running on Microsoft 
Windows 8 Pro x64. The CPU used is an Intel Core i7 
3770K processor at 3.50 GHz, with 16GB of DDR3 RAM, 
graphics are handled by the NVidia GeForce GTX 670 GPU.  

A. Example 1 

 Field size: 10 by 10 

 Wall Percentage: 40% 

The first simulation example begins with a small-scaled 
map, demonstrating the algorithms performance in a 10 by 
10 block map. Here, the direct path to the goal from the 
starting node is blocked and the algorithm has to route across 
it to map a path. It should be noted that the simulations here 
were performed in extremely short amounts of time. 

 
Figure 2: Search pattern 

TABLE II: EXAMPLE 1 RESULTS 

Algorithm Time Taken /s Threshold 

IDDFS 0.216 60 

IDA* 0.114 37 

Fringe Search 0.099 37 

BIDDFS 0.137 60 
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Based on the results, it can be seen that the IDDFS, being 
an uninformed algorithm, runs longer compared to the IDA*, 
which is an informed search algorithm. The IDDFS has a 
threshold of 60, which means that the starting node needs to 
be expanded 60 times for it to reach the goal. It is evident 
that boundary searches are faster than iterative-deepening 
searches, thanks to the usage of memory to store frontier 
nodes between threshold increments. However, the nature of 
an informed search of the BIDDFS still makes it slower 
compared to the fringe search, which is an informed search 
algorithm. 

B. Example 2 

 Field size: 70 by 70 

 Wall percentage: 40% 

To show the radial node expansion of uninformed search 
algorithms, a medium-large map will be used for this 
example. To ensure consistency, the walls here are still kept 
at 40%, but the size of the map is now increased to 70 by 70 
blocks. Then again, a 40% wall ratio in this map translates to 
an entirely different scenario for the algorithms. This wall 
ratio means that the obstacles will appear more scarce than 
the 10 by 10 grid above; yet, is it enough to prevent a 
diagonally straight path from connecting the starting node to 
the goal. 

 
Figure 3: Search pattern 

TABLE III: EXAMPLE 2 RESULTS 

Algorithm Time Taken /s Threshold 

IDDFS 377.165 1815 

IDA* 15.552 545 

Fringe Search 14.975 545 

BIDDFS 103.622 1815 

With a larger map, iterative-deepening algorithms now 
take significantly longer times to run than example 1. Still, 
the distance between the starting and ending node is only 
approximately half of the map‟s length, which would suggest 
that more time would be needed for such a runtime, 
considering that in this example, approximately 40% of the 
map has not been expanded. Nonetheless, the expansion 

pattern observed here shows that the nodes are expanded 
radially, since no heuristic data was relied on during an 
uninformed search. 

To offer a fair comparison, the boundary algorithms are 
compared against the standard iterative-deepening 
algorithms. When boundary searches are used instead of the 
iterative-deepening searches, the number of thresholds 
remain the same. However, because the frontier nodes are 
saved in the memory between each threshold increment, the 
total runtime of each algorithm is vastly faster than their 
iterative-deepening predecessors.  

Here, the time taken for the simulation for the BIDDFS is 
3 times faster than the IDDFS. As mentioned previously, this 
effect of a larger map brings exponential runtime differences, 
as many more nodes will be expanded for pathfinding. 

C. Example 3 

 Field size: 25 by 25 

 Wall percentage: 20% 

By decreasing the wall percentage of the map, the results 
should produce a more linear path from the starting node to 
the goal. To allow a more reasonable simulation time, the 
map size has been reduced to a small-medium size of 25 by 
25 blocks. 

 
Figure 4: Search pattern 

TABLE IV: EXAMPLE 3 RESULTS 

Algorithm Time Taken /s Threshold 

IDDFS 7.701 404 

IDA* 1.700 177 

Fringe Search 1.679 177 

BIDDFS 5.092 404 

A smaller map from example 2 means a smaller 
simulation time and hence a smaller threshold. Still, the 
simulation times for these algorithm is still quite long 
compared to the first example, though it has indeed seen 
significant improvements from a larger map. 
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Like the previous example, the boundary searches here 
shows significant time improvements over their predecessors 
in the iterative-deepening searches. The threshold remains 
the same and the time improvements is credited to the small 
amount of memory used to save the frontier nodes before 
every threshold increment. 

D. Example 4 

 Field size: 25 by 25 

 Wall percentage: 60% 

Increasing the wall percentage from example 3 yields a 
map that is more linear and more similar to a proper hedge 
maze. Maps like these also restricts the expansion pattern of 
the pathfinding algorithms to a more linear manner and 
hence, the radial expansions of uninformed searches will not 
be observed here. 

 
Figure 5: Uninformed search pattern 

TABLE V: EXAMPLE 4 RESULTS 

Algorithm Time Taken /s Threshold 

IDDFS 1.183 152 

IDA* 0.973 140 

Fringe Search 0.949 140 

BIDDFS 0.689 152 

In this example, the BIDDFS algorithm really shines – 
the linearity of the map limits the node expansion number 
during pathfinding, and being a boundary uninformed search 
algorithm, node calculations are simplified since there is no 
involvement of heuristics, which is further enhanced by the 
boundary-node oriented expansion of the algorithm. This 
example clearly illustrates that among all the iterative-
deepening algorithms (threshold related), the BIDDFS has 
the fastest node expansion rate. Also note that the difference 
in threshold between informed and uninformed searches is 
just 12, indicating that the number of nodes expanded by 
each algorithm is almost the same. 

VI. CONCLUSION 

Comparing with another uninformed search algorithm, 
the BIDDFS is found to be superior to the standard IDDFS in 
all simulation examples. This is credited to the small 
memory used to store the boundary nodes before the 
threshold is increased, and hence the next sub-runtime can 
start immediately from the leaf nodes instead of the starting 
node. When used in a more linear map, the BIDDFS is 
shown to be more superior to the informed search algorithms 
IDA* and fringe search, for a simpler calculation process 
means each node expansion can be done faster than that of 
the informed search algorithm. Though, being an uninformed 
search algorithm, the BIDDFS is still inferior to the informed 
search algorithms when exposed to an open map.  

As to the future works of this algorithm, it is 
hypothesised that iterative-deepening algorithms will greatly 
benefit from parallel computing. During the runtime for each 
simulation, it was noted that MATLAB was not fully 
utilising the capabilities of the computer, which may explain 
the time difference between these algorithms with the non-
iterative-deepening algorithms such as the Dijkstra‟s 
algorithm and the A* search algorithm, even with a lower 
memory footprint.  

REFERENCES 
[1] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern 

Approach. New Jersey, USA: Prentice Hall, 2010. 
[2] (2005, 6 October). Uninformed vs informed search. Available: 

http://monash.mindyoursite.com/index.php?title=Uninformed_vs_infor
med_search 

[3] P. E. Hart, N. J. Nilsson, and B. Raphael, "A Formal Basis for the 
Heuristic Determination of Minimum Cost Paths," Systems Science 
and Cybernetics, IEEE Transactions on, vol. 4, pp. 100-107, 1968. 

[4] E. W. Dijkstra, "A Note on Two Problems in Connexion with Graphs," 
NUMERISCHE MATHEMATIK, vol. 1, pp. 269-271, 1959. 

[5] R. E. Korf, "Depth-first iterative-deepening: an optimal admissible tree 
search," Artif. Intell., vol. 27, pp. 97-109, 1985. 

[6] Y. Björnsson, M. Enzenberger, R. C. Holte, and J. Schaeffer, "Fringe 
search: beating A* at pathfinding on game maps," in Proceedings of 
IEEE Symposium on Computational Intelligence and Games, 2005, pp. 
125-132. 

[7] B. L. Sturm. (2012, 12/12). Bob L. Strum. Available: 
http://imi.aau.dk/~bst/ 

 
 

Proc. of the Second Intl. Conf. on  Advances in Computer and Information Technology -- ACIT 2013 
Copyright © Institute of Research Engineers and Doctors. All rights reserved. 

ISBN: 978-981-07-6261-2 doi:10.3850/ 978-981-07-6261-2_26 
 

http://monash.mindyoursite.com/index.php?title=Uninformed_vs_informed_search
http://monash.mindyoursite.com/index.php?title=Uninformed_vs_informed_search
http://imi.aau.dk/~bst/

