

119

The Boundary Iterative-Deepening Depth-First
Search Algorithm

Lim Kai Li, K.P. Seng, L.S. Yeong, S. I. Ch‟ng
Department of Computer Science and Networked Systems

Sunway University
Petaling Jaya, Selangor, Malaysia
12057642@imail.sunway.edu.my,

jasmines@sunway.edu.my, leesengy@sunway.edu.my,
sueinnc@sunway.edu.my

Ang Li-Minn
School of Engineering

Edith Cowan University
Joondalup, Western Australia

li-minn.ang@ecu.edu.au

Abstract—Boundary searches were introduced in
pathfinding aiming to find a middle-ground between memory
intensive algorithms such as the A* search algorithm and the
cycle redundancy of iterative-deepening algorithms such as the
IDA*. Boundary search algorithms allocate a small memory
footprint during runtime to store frontier nodes between each
iteration to reduce redundancy, while expanding nodes in the
same manner as iterative-deepening algorithms. The boundary
search algorithm fringe search is an informed search algorithm
derived from the IDA* for use in known environments. This
paper proposes the boundary iterative-deepening depth-first
search (BIDDFS) algorithm, which fills the gap made by the
fringe search for uninformed search algorithms. The BIDDFS
is optimised to perform blind searches in unknown
environments, where simulation experiments found that it is up
to more than 3 times faster than standard uninformed
iterative-deepening algorithms.

Keywords—pathfinding, uninformed search, iterative-
deepening, boundary search

I. INTRODUCTION

Pathfinding in computing is often described as the
plotting by a computer application to find the best route
between two points. In everyday life, a pathfinder generally
finds routes between points in a physical environment such
as a landscape, a map or a terrain. Pathfinding results are
most often used in navigation. This often results in
movement between the points on the route. Furthermore, due
to the ubiquitous requirements for pathfinding, it is worth
implying that pathfinding is supposed to generate an
optimum route, although there are often factors that also
prevent it from achieving so, such as computer limitations
and terrain difficulties.

According to [1], the efficiency of a pathfinding
algorithm can be classified to its completeness, where it is
guaranteed to a route solution if it exists; its optimality,
where it is able to provide the optimal solution; its time
complexity, for how much time is taken for pathfinding; and
its space complexity, for the amount of memory required to
compute a route.

Pathfinding algorithms are classified into uninformed and
informed search [1]. An informed search performs in an
environment where its location information is known; this
means that the algorithm is able to use this location
information to identify the paths and obstacles of an
environment (heuristics). On the other hand, uninformed
searches are performed where environmental data is not
known. The computing of the route uses forward planning,
where it anticipates data from future iterations (aka blind
search), Uninformed search algorithms often need to
discover the environment before a proper path can be defined
[2]. This is the cause of it being less efficient than the
informed search since paths can be chosen that will not
eventually lead to the ending point. An informed search will
not encounter this problem.

With regards to the more well-known pathfinding
algorithms, they are often considered to be flexible and
efficient. Algorithms such as the A* (pronounced “A-star”)
search algorithm [3] and the Dijkstra‟s shortest path
algorithm [4] are often used interchangeably in situations,
depending on the requirements that the current situation
holds, as both algorithms, along with other unmentioned
algorithms are made to cater for different pathfinding
scenarios.

Starting with the A* algorithm, it is considered to be one
of the most established and well-known pathfinding
algorithms around. Its flexibility and capability to compute
the optimum route is highly favoured, this is also balanced
with its high performance capability that is contributed by its
improvements over older algorithms such as the greedy
algorithm, and the Dijkstra‟s algorithm.

General pathfinding algorithms such as the Dijkstra‟s
algorithm and the A* search algorithm performs well in
many situations, but suffers from memory issues especially
when faced with larger maps. From here, an iterative-
deepening search was introduced to the algorithms,
transforming them into the iterative-deepening depth first
search (IDDFS) [1] and the Iterative-deepening A* (IDA*)
[5] search algorithm. Iterative-deepening searches are
intended to give the search algorithm a significantly smaller

Proc. of the Second Intl. Conf. on Advances in Computer and Information Technology -- ACIT 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6261-2 doi:10.3850/ 978-981-07-6261-2_26

120

memory footprint, often but not necessarily, at the expense of
a longer runtime.

To achieve a balanced compensation between runtime
speed and memory consumption, the fringe search was
introduced, deriving from the IDA* search algorithm. Based
on the specifications of the fringe search and the original
IDDFS algorithm, a new algorithm was proposed to
accommodate fringe searching in uninformed environments,
dubbed the Boundary IDDFS (BIDDFS), for the word
„boundary‟ provides a more accurate representation of the
search algorithm.

Six search algorithms were identified for this research
with increasing depth and complexity. These algorithms are
categorised into uninformed and informed searches, iterative
deepening searches, and fringe searches [6], as illustrated in
Table I.

TABLE I: PATHFINDING ALGORITHMS

 Uninformed Informed

Pathfinding Dijkstra‟s A*, Greedy BFS

Iterative-Deepening IDDFS IDA*

Boundary BIDDFS Fringe Search

For the analysis of the algorithms, each algorithm will be
run and compared on the same, randomly generated grid map
environment. The differences between each algorithm are
presented in each of their logical structure. Subsequently,
their efficiencies and memory footprint will be analysed in
the following section.

The term „node‟ is used rather frequently in this paper. A
node here is defined as a single grid box from the map
illustrations of Section V. Nodes can be made as a starting
node (green dot), an ending node (yellow dot), or an OPEN
or CLOSED node, where the latter will be further explained
in the next section.

Section II in this paper explains the iterative-deepening
searches, and the general logic behind these algorithms.
Section III describes boundary searches, a subset of iterative-
deepening searches that stores boundary nodes before each
new iteration for faster runtimes. Section IV proposes a new
algorithm, the boundary iterative-deepening depth-first
search algorithm, to introduce boundary searches in
uninformed environments. Section V will involve simulation
examples, where the BIDDFS will be compared against other
algorithms in different map environments. Finally, Section
VI presents the conclusion and future works.

II. ITERATIVE-DEEPENING SEARCHES

These algorithms were devised to address the issues of
large memory footprints of their preceding algorithms,
especially in large maps, where the memory requirement for
each runtime could increase exponentially. For the
implementation of this research, an iterative-deepening
algorithm was identified for one each of the uninformed and
informed search. As such, the iterative-deepening depth-first
search (IDDFS) addresses the memory shortcomings of the
Dijkstra‟s algorithm and likewise for the IDA* search

algorithm addressing the memory issues of the A* search
algorithm.

Here, the main contribution to the large memory footprint
of the algorithms – the OPEN and CLOSED sets of each
node, are removed, leaving only the heuristic and cost
information of the neighbouring, OPEN nodes. Once a node
has been expanded, where normally a Dijkstra‟s algorithm or
A* search algorithm implementation will update these nodes
to a CLOSED state, iterative-deepening algorithms will not
store any information regarding these nodes, and hence
“forgetting” these nodes entirely, hence saving significant
amounts of memory.

In other words, iterative-deepening algorithms are
implemented here as forward, progressive algorithms. By
way of implementation, these algorithms rely on the
existence of “thresholds”. Since it is not possible for the
algorithm to remember the nodes it has expanded, the
“threshold” governs the expansion boundary of each runtime,
for the lack of memory regarding expanded nodes will lead
to overexpansion. If a goal is not found at a specific
threshold, the pathfinding process will terminate, the
threshold will be increase, and the process starts again.
Hence with the implementation of these algorithms, a double
loop will be used – one for the standard process of the search
algorithm, and another to increase the threshold and restart
the runtime for each run that fails to reach the goal.

Indeed, at each reset of the runtime with a threshold
increment, the nodes expanded in the previous runtime must
be expanded again. To ease explanations, the entire
pathfinding runtime of the algorithm can be separated into
different sub-runtimes at different thresholds. Therefore, the
total runtime for an iterative-deepening algorithm may
actually be greater than its predecessor algorithm, especially
in smaller maps. Yet, when used in large environments, the
small memory footprint of these algorithms will in fact result
in a faster runtime than the predecessor algorithms.

III. BOUNDARY SEARCHES

Boundary searches were conceptualised due to the need
of reducing the search redundancy of iterative-deepening
search algorithms, while keeping the memory requirements
of the algorithm low. In fact, the only known boundary
search algorithm in literature that aims to address these
issues is the Fringe Search algorithm. In this section, the
word “boundary” is used instead of “fringe” to give a more
accurate representation of the algorithm, and the minimise
confusion between the Fringe Search and the forthcoming,
new algorithm.

The main idea behinds boundary searches is rather simple
– to prevent the need of re-expanding the entire search map
every time the algorithm resets for a threshold increment.
Since it was mentioned that iterative-deepening searches do
not store information regarding CLOSED nodes, and it
simply forgets them, the proposed solution was to save the
OPEN nodes of the last iteration into the memory before the
algorithm resets and increase its threshold, these nodes are
called the leaf nodes, the boundary nodes, or the frontier
nodes. Hence, like the iterative-deepening algorithms, the

Proc. of the Second Intl. Conf. on Advances in Computer and Information Technology -- ACIT 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6261-2 doi:10.3850/ 978-981-07-6261-2_26

121

usage of an incremental threshold and the lack of data
regarding expanded nodes, is still present in these
algorithms. Furthermore, the need of storing the last OPEN
nodes in the memory also means that boundary searches does
indeed require a greater memory footprint than that of
iterative-deepening algorithms. Yet, since only information
regarding the “boundary” is stored in the memory, (unlike
the Dijkstra‟s or A* search algorithm, which stores
information about all expanded nodes in the memory), its
memory footprint is still significantly lower than the A* and
the Dijkstra‟s search algorithm.

Performance wise, boundary searches are suitable for use
in medium to large-scaled maps. While a single sub-runtime,
boundary searches still performs much faster than the
standard A* or Dijkstra‟s search algorithms. However,
boundary searches, at a single threshold, is still slower in
node expansion as compared to iterative-deepening searches,
since the algorithm has to load its boundaries into the
memory.

Shifting perspectives onto the entire runtime however,
boundary searches do not re-expand nodes from the
beginning, and hence in many cases it is able to perform
faster than iterative-deepening searches, especially in
medium to large map environments. This means that instead
of re-expanding the whole map at every threshold increment,
only the boundary nodes are re-expanded. While this does
not completely eliminate the redundancy issues in iterative
deepening searches, these algorithms are able to keep it at a
minimum.

IV. BOUNDARY ITERATIVE-DEEPENING DEPTH-FIRST
SEARCH

The BIDDFS is a newly proposed algorithm aiming to
address the same issues the fringe search did with the IDA*,
this time with the IDDFS algorithm. Its main concept utilises
the fringe search described in the previous section and it is
modified to address the redundancy issues of the IDDFS
algorithm. Hence, while the fringe search explores a middle-
ground between the A* and the IDA* search algorithms; the
BIDDFS now explores the middle-ground between the
IDDFS and the Dijkstra‟s algorithm.

That said, the BIDDFS is an uninformed search
algorithm, and similar to the application above, it maintains
only the “now” list to store information of the frontier nodes.
Essentially, while its main search procedure is a boundary
search algorithm, its other pathfinding procedures were
derived from the IDDFS and hence the Dijkstra‟s algorithm.
In other words, it should be noted that first, the expansion
pattern for this algorithm, along with the IDDFS and the
Dijkstra‟s algorithm, should be the same, so long as the map
and cost environment remains the same. Second, since this
algorithm is indirectly based off the Dijkstra‟s algorithm, this
algorithm, along with all other algorithms discussed in this
section (except the greedy BFS) should return the same,
shortest path back to the starting node from the goal node.

Being an uninformed search algorithm, the BIDDFS is
essentially a fringe search algorithm without the heuristic
data that makes it an informed search algorithm. Like the

fringe search, the BIDDFS also operates using a threshold to
compensate for the lack of memory, when a sub-runtime
reaches its boundary, the frontier nodes are saved into the
memory and accessed when the threshold increases and the
search process restarts. Essentially, this algorithm follows the
procedure below:

1. Increasing threshold by 1
a. Calculating the cost of surrounding nodes

from the location node.
b. Update surrounding OPEN nodes‟ cost.
c. Assign costs and pointers for

neighbouring nodes.
d. OPEN a new, neighbouring node as the

location node, if available. Otherwise
check for better route to it.

2. Save frontier nodes in memory and define starting
position.

Hence, the pseudocode below summarises the logic
behind the BIDDFS:

init

 boundary B = s

 cache C[beginning] = (0, null)

 for n in C, n != beginning

 C[n] = null

 threshold = h(start)

 reachedgoal = false

 while NOT goal=true AND B NOT empty

 fmin = ∞

 for n in F, from left to right

 (g, parent) = C[n]

 if g > threshold

 fmin = min(g, fmin)

 continue

 if n = goal

 reachedgoal = true

 break

 for s in children(n), from right to left

 g(s) = g + cost(n, s)

 if C[s] != null

 (g', parent) = C[s]

 if g(s) >= g'

 continue

 if s in B

 remove s from B

 insert s in F past n

 C[s] = (g(s), n)

 remove n from B

 threshold = fmin

 if reachedgoal = true

 make path from cache

Figure 1: BIDDFS Pseudocode

Performance wise, the BIDDFS is able to show
significant improvements in efficiency over its predecessor,
the IDDFS algorithm, especially in small to medium-large
maps. This is credited to the usage of the small memory
allocation to store information for the frontier nodes before
the threshold increment reset process, which will be
illustrated in section 4 below. That said, like the IDA*, the
BIDDFS is designed to be a situational algorithm; it
depending on the method of implementation, or may or may
not yield better results than the algorithm it is compared to.

Proc. of the Second Intl. Conf. on Advances in Computer and Information Technology -- ACIT 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6261-2 doi:10.3850/ 978-981-07-6261-2_26

122

For example, if a map is small enough, a typical
Dijkstra‟s search algorithm will be able to solve the map
faster than the BIDDFS, due to its requirement for threshold
resets, even on small maps. On the other hand, if a map is too
large, the IDDFS would perform faster than the BIDDFS.
This is because in large maps, the number of frontier nodes
will be greater, and hence more time would be needed to
store the large amounts of data in the memory. Though, this
algorithm will still be faster than the Dijkstra‟s algorithm as
it needs to save even more data into its memory.

Then again, the method of simulation would also
contribute rather greatly to the eventual performance of the
algorithm. For instance, the simulation method described in
section 4 below requires the figure to be closed and reopened
for to clear the map. This alone undermines the ability of the
algorithm to perform ideally as the opening and closing of
the figure drawing the map, coupled with the need for the
process to redraw the map, causes significant delays to the
algorithm, and also other similar algorithms.

All in all, the theoretical argument and purpose of this
algorithm is to find an efficient and less redundant
uninformed search for use in unknown environments, a
middle-ground between the Dijkstra‟s algorithm and the
IDDFS algorithm. Furthermore, algorithms like these are
able to cater for dynamically changing algorithms by
including an adjustment function to adjust the map properties
in between thresholds, and so long as that adjusted node has
not been expanded, it will be expanded properly as soon as it
becomes the frontier node. Once a goal has been found, the
algorithm will follow the same methods used in the
Dijkstra‟s algorithm to route the resultant route from the goal
back to the starting node.

V. SIMULATION EXAMPLES

The algorithms listed in Table I were analysed for their
time and memory efficiencies. These algorithms are tested on
the same grid map environment of varying size and number
of obstacles. All analyses are programmed on MATLAB.
Mapping illustrations are based on the source codes by Bob
L. Sturm [7], which also performs route calculations. The
IDA*, IDDFS, fringe search, and BIDDFS algorithms were
programmed individually and independently to run on
Strum‟s mapping framework.

For each simulation, the map size will be determined by a
square field of size n by n blocks, and walls will be placed at
random blocks until it constitutes to a percentage of a map as
determined by the wall percentage. Then, simulation results
will be posted, starting from the original pathfinding
algorithms, the iterative-deepening algorithms, and then the
boundary algorithms.

For each result set, a screen capture of the map and its
simulation time will be recorded, noted by the algorithms‟
self-time feature in the MATLAB profiler. With reference to
the screen capture of the maps, blocks of increasing blue
hues represent the block‟s proximity to the starting node
whilst blocks of increasing red hues represent the block‟s
proximity to the goal node. The starting node is marked with
a green dot and the goal node is marked with a yellow dot.

The grey tracing connecting both the starting and goal node
is the resulting path returned by each algorithm. Simulation
times are obtained by clicking the “Run and Time” button on
respective code editor windows. Each figure in the
following examples are screen captures of the map
representing the search pattern of an uninformed search
algorithm, e.g. the BIDDFS.

With regards to the threshold of each iterative-deepening
algorithm, the threshold is set to display during runtime
where it is incremented after each sub-runtime that fails to
find the goal node. This value will then be tabulated in the
results once the runtime ends. A greater threshold means
more nodes are expanded for pathfinding, which can also
indicate a greater distance between the starting node and the
goal node.

All simulations are performed using the 64-bit version of
Mathworks MATLAB R2012b running on Microsoft
Windows 8 Pro x64. The CPU used is an Intel Core i7
3770K processor at 3.50 GHz, with 16GB of DDR3 RAM,
graphics are handled by the NVidia GeForce GTX 670 GPU.

A. Example 1

 Field size: 10 by 10

 Wall Percentage: 40%

The first simulation example begins with a small-scaled
map, demonstrating the algorithms performance in a 10 by
10 block map. Here, the direct path to the goal from the
starting node is blocked and the algorithm has to route across
it to map a path. It should be noted that the simulations here
were performed in extremely short amounts of time.

Figure 2: Search pattern

TABLE II: EXAMPLE 1 RESULTS

Algorithm Time Taken /s Threshold

IDDFS 0.216 60

IDA* 0.114 37

Fringe Search 0.099 37

BIDDFS 0.137 60

Proc. of the Second Intl. Conf. on Advances in Computer and Information Technology -- ACIT 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6261-2 doi:10.3850/ 978-981-07-6261-2_26

123

Based on the results, it can be seen that the IDDFS, being
an uninformed algorithm, runs longer compared to the IDA*,
which is an informed search algorithm. The IDDFS has a
threshold of 60, which means that the starting node needs to
be expanded 60 times for it to reach the goal. It is evident
that boundary searches are faster than iterative-deepening
searches, thanks to the usage of memory to store frontier
nodes between threshold increments. However, the nature of
an informed search of the BIDDFS still makes it slower
compared to the fringe search, which is an informed search
algorithm.

B. Example 2

 Field size: 70 by 70

 Wall percentage: 40%

To show the radial node expansion of uninformed search
algorithms, a medium-large map will be used for this
example. To ensure consistency, the walls here are still kept
at 40%, but the size of the map is now increased to 70 by 70
blocks. Then again, a 40% wall ratio in this map translates to
an entirely different scenario for the algorithms. This wall
ratio means that the obstacles will appear more scarce than
the 10 by 10 grid above; yet, is it enough to prevent a
diagonally straight path from connecting the starting node to
the goal.

Figure 3: Search pattern

TABLE III: EXAMPLE 2 RESULTS

Algorithm Time Taken /s Threshold

IDDFS 377.165 1815

IDA* 15.552 545

Fringe Search 14.975 545

BIDDFS 103.622 1815

With a larger map, iterative-deepening algorithms now
take significantly longer times to run than example 1. Still,
the distance between the starting and ending node is only
approximately half of the map‟s length, which would suggest
that more time would be needed for such a runtime,
considering that in this example, approximately 40% of the
map has not been expanded. Nonetheless, the expansion

pattern observed here shows that the nodes are expanded
radially, since no heuristic data was relied on during an
uninformed search.

To offer a fair comparison, the boundary algorithms are
compared against the standard iterative-deepening
algorithms. When boundary searches are used instead of the
iterative-deepening searches, the number of thresholds
remain the same. However, because the frontier nodes are
saved in the memory between each threshold increment, the
total runtime of each algorithm is vastly faster than their
iterative-deepening predecessors.

Here, the time taken for the simulation for the BIDDFS is
3 times faster than the IDDFS. As mentioned previously, this
effect of a larger map brings exponential runtime differences,
as many more nodes will be expanded for pathfinding.

C. Example 3

 Field size: 25 by 25

 Wall percentage: 20%

By decreasing the wall percentage of the map, the results
should produce a more linear path from the starting node to
the goal. To allow a more reasonable simulation time, the
map size has been reduced to a small-medium size of 25 by
25 blocks.

Figure 4: Search pattern

TABLE IV: EXAMPLE 3 RESULTS

Algorithm Time Taken /s Threshold

IDDFS 7.701 404

IDA* 1.700 177

Fringe Search 1.679 177

BIDDFS 5.092 404

A smaller map from example 2 means a smaller
simulation time and hence a smaller threshold. Still, the
simulation times for these algorithm is still quite long
compared to the first example, though it has indeed seen
significant improvements from a larger map.

Proc. of the Second Intl. Conf. on Advances in Computer and Information Technology -- ACIT 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6261-2 doi:10.3850/ 978-981-07-6261-2_26

124

Like the previous example, the boundary searches here
shows significant time improvements over their predecessors
in the iterative-deepening searches. The threshold remains
the same and the time improvements is credited to the small
amount of memory used to save the frontier nodes before
every threshold increment.

D. Example 4

 Field size: 25 by 25

 Wall percentage: 60%

Increasing the wall percentage from example 3 yields a
map that is more linear and more similar to a proper hedge
maze. Maps like these also restricts the expansion pattern of
the pathfinding algorithms to a more linear manner and
hence, the radial expansions of uninformed searches will not
be observed here.

Figure 5: Uninformed search pattern

TABLE V: EXAMPLE 4 RESULTS

Algorithm Time Taken /s Threshold

IDDFS 1.183 152

IDA* 0.973 140

Fringe Search 0.949 140

BIDDFS 0.689 152

In this example, the BIDDFS algorithm really shines –
the linearity of the map limits the node expansion number
during pathfinding, and being a boundary uninformed search
algorithm, node calculations are simplified since there is no
involvement of heuristics, which is further enhanced by the
boundary-node oriented expansion of the algorithm. This
example clearly illustrates that among all the iterative-
deepening algorithms (threshold related), the BIDDFS has
the fastest node expansion rate. Also note that the difference
in threshold between informed and uninformed searches is
just 12, indicating that the number of nodes expanded by
each algorithm is almost the same.

VI. CONCLUSION

Comparing with another uninformed search algorithm,
the BIDDFS is found to be superior to the standard IDDFS in
all simulation examples. This is credited to the small
memory used to store the boundary nodes before the
threshold is increased, and hence the next sub-runtime can
start immediately from the leaf nodes instead of the starting
node. When used in a more linear map, the BIDDFS is
shown to be more superior to the informed search algorithms
IDA* and fringe search, for a simpler calculation process
means each node expansion can be done faster than that of
the informed search algorithm. Though, being an uninformed
search algorithm, the BIDDFS is still inferior to the informed
search algorithms when exposed to an open map.

As to the future works of this algorithm, it is
hypothesised that iterative-deepening algorithms will greatly
benefit from parallel computing. During the runtime for each
simulation, it was noted that MATLAB was not fully
utilising the capabilities of the computer, which may explain
the time difference between these algorithms with the non-
iterative-deepening algorithms such as the Dijkstra‟s
algorithm and the A* search algorithm, even with a lower
memory footprint.

REFERENCES
[1] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern

Approach. New Jersey, USA: Prentice Hall, 2010.
[2] (2005, 6 October). Uninformed vs informed search. Available:

http://monash.mindyoursite.com/index.php?title=Uninformed_vs_infor
med_search

[3] P. E. Hart, N. J. Nilsson, and B. Raphael, "A Formal Basis for the
Heuristic Determination of Minimum Cost Paths," Systems Science
and Cybernetics, IEEE Transactions on, vol. 4, pp. 100-107, 1968.

[4] E. W. Dijkstra, "A Note on Two Problems in Connexion with Graphs,"
NUMERISCHE MATHEMATIK, vol. 1, pp. 269-271, 1959.

[5] R. E. Korf, "Depth-first iterative-deepening: an optimal admissible tree
search," Artif. Intell., vol. 27, pp. 97-109, 1985.

[6] Y. Björnsson, M. Enzenberger, R. C. Holte, and J. Schaeffer, "Fringe
search: beating A* at pathfinding on game maps," in Proceedings of
IEEE Symposium on Computational Intelligence and Games, 2005, pp.
125-132.

[7] B. L. Sturm. (2012, 12/12). Bob L. Strum. Available:
http://imi.aau.dk/~bst/

Proc. of the Second Intl. Conf. on Advances in Computer and Information Technology -- ACIT 2013
Copyright © Institute of Research Engineers and Doctors. All rights reserved.

ISBN: 978-981-07-6261-2 doi:10.3850/ 978-981-07-6261-2_26

http://monash.mindyoursite.com/index.php?title=Uninformed_vs_informed_search
http://monash.mindyoursite.com/index.php?title=Uninformed_vs_informed_search
http://imi.aau.dk/~bst/

