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Numerical Modeling of Wave Propagation using 
RBF-based Meshless Method  
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Abstract— Radial basis functions (RBFs) are the functions 
whose values depend only on the distance from the 
point called center. These functions are employing in the 
approximation theory and they can be utilized in the point 
interpolation method as a type of meshless approach for 
constructing the shape function. This paper discusses on the 
results of RBF-based meshless numerical modeling of wave 
propagation for additional mass detection in isotropic rod which 
it can be assumed as damage. Number of nodes, position and 
magnitude of additional mass and the variation of multiauadric 
RBF parameters have been studied in this paper.   

Keywords— Radial basis function, Radial point interpolation, 
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I.  Introduction 
In the field of structural health monitoring, since the 

presence of crack or other small size defects leads to low 
changes in the modal data, therefore the employing modal-
based methods for this type of damage assessment are not 
appropriate. Furthermore, these methods are suitable for 
discrete lumped-parameter systems. Among various non-
destructive techniques, elastic wave-based methods are 
effective approach which can be overcome to the restrictions 
of traditional methods. These methods are based on the well-
known fact that the traveling wave with high frequency 
content scatters from defect and discontinuity in solids.  

A variety of numerical techniques have been applied in 
order to modeling the wave propagation and scattering in the 
time or frequency domain. Most frequent method is 
conventional FEM. Conventional mesh-based methods are not  
well suited to treat problems with strong inhomogeneity, large 
deformations, mesh distortion and discontinuities that do not 
align with element edges. The existence of meshes may cause 
strong mesh dependency of the calculation for dynamic 
problems. One strategy for dealing with moving 
discontinuities in mesh-based methods is re-meshing or 
discontinuous enrichment. However, re-meshing is costly, still 
difficult in three dimensions and requires projection of 
quantities between successive meshes and leads to largely 
decreasing of efficiency and introducing large errors into the 
calculation [1]. 

In the last decades, meshless methods have been developed 
for solving differential equations as an alternative to the mesh-
based methods which do not pose the mesh-related difficulties. 
Many meshless methods were proposed in [2-4]. Wen [5] 
utilized a meshless local Petrov–Galerkin (MLPG) method 
which is applied to solve wave propagation problems of three-
dimensional poroelastic solids. Gao et al [6] proposed a new 
MLPG Method to analyze stress-wave propagation and 
dynamic fracture problems in anisotropic and cracked media. 
Zhang and Batra [7] applied a modification to the smoothed 
particle hydrodynamics (SPH) method for improvement of the 
accuracy of the approximation especially at points near the 
boundary of the domain. Also they [8] used the modified 
smoothed particle hydrodynamics (MSPH) method to study 
the propagation of elastic waves in functionally graded 
materials. Li et al [9] formulates a meshless method based on 
the RBF collocation technique and generalized trapezoidal 
method for the numerical simulation of the wave propagation 
problems. 

The point interpolation method (PIM) [10, 11] is a 
meshless method can be categorized as a series representation 
interpolation. PIM employs Galerkin weak form and shape 
functions that are constructed based on nodes distributed in the 
support domain. A background cell is required to evaluate the 
integration in the Galerkin weak-form. The major advantage 
of PIM is that the shape functions created possess the 
Kronecker delta function property, which allows simple 
enforcement of essential boundary conditions. There are two 
types of PIM shape functions with different forms of basis 
functions: polynomial basis functions and radial basis 
functions (RBFs) [12, 13]. RBFs are the functions whose 
values depend only on the distance from the 
point called center. In order to avoid the singularity problem in 
the polynomial PIM, RBFs are used to develop the radial point 
interpolation method (RPIM) shape functions for weak-form 
methods. It has been proved that the moment matrix of the 
RBF interpolation is usually invertible for arbitrary scattered 
nodes. The RPIM has been successfully applied to 1-, 2- and 
3D solid mechanics [12, 14], plate structures [15], 
geometrically nonlinear problems [16] and material non-linear 
problems [17]. 

In this paper, the numerical modeling of wave propagation 
are investigated based on RPIM in rods and the capability of 
this method for detection of additional mass which is located 
in the length of rod are studied. Multiquadric type of RBF in 
this study is considered as basis function and the effects of its 
parameters are investigated and the results are presented in 
detail.  
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II. Basic Formulation 

A.  Radial Point Interpolation Method 
Consider a continuous function )(xu (i.e. displacement) in 

a domainΩ . )(xu can be approximated in an influence domain 
that has a set of arbitrarily distributed nodes using radial basis 
function Ri(x)   as follows: 

 aRxx (x))a(R)u( T
i
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Where n is the number of nodes in the influence domain of 
Tzyx ],,[x . ai is the corresponding coefficient of the basis 

functions and can be determined by enforcing )(xu  to be the 
nodal displacement at n nodes in the influence domain: 
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Where ds is the vector of nodal displacements: 
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a is the vector of unknown coefficients: 
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and RQ is the moment matrix of RBF: 
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since in the radial basis function, the variable is only the 
distance between the point of interest ),,( zyx  and a node at 

),,( kkk zyx : 
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Because the distance is directionless: 

 )()( ijji rRrR   

Therefore the moment matrix RQ is always symmetric and 
invertible. Then vector of unknown coefficients a can be 
obtained as: 

 s
1
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Substituting (8) into (1) yields: 

 ss
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)(x is the vector of RPIM shape functions. Constructed 
RPIM shape functions are, in general, incompatible, not 
consistent, and they have the Kronecker delta function 
property which allows essential boundary conditions to be 
easily treated in the same way as in the standard FEM. There 
are different RBFs such as multi-quadratic, Gaussian, and 
Logarithmic. In this paper the multi-quadratic form has been 
used as follows: 

 0])([)( 2  c
q

ccii drR x  

c and q in (11) are shape parameters and their values 

depend on the problems and cd is the characteristic length that 
is usually the average nodal spacing for all the n nodes in the 
influence domain. 

B. Wave propagation problems  
A wave propagation modeling problem is well-known 

ordinary differential equations, which can be written in a 
matrix form: 

 FKUUCUM    

where M is the global mass matrix, K is the global stiffness 
matrix, and F is a vector of the time dependent excitation 
signal with the following components expressed as: 
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In above expressions, E, ρ , b and T are material matrix, 
mass density, body force density and prescribed surface 
traction, respectively. Γ is the boundary along which the 
surface traction is imposed and B is the strain matrix as the 
following in one-dimensional problems: 
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 ][ ,xiiB   

βKαMC   is the global damping matrix with damping 
parameter  , . 

For the numerical integrations of (13-15), a background 
mesh is necessary which is independent of nodes for 
interpolations. Gauss-quadrature is used for this numerical 
integration in this paper. 

C. Time integration scheme 
For solving (12), the central difference time integration 

scheme is used. Zero initial conditions, 0U  and 0U at 
0t  are assumed to be implemented as initial displacement 

and velocity in the central difference time integration scheme 
[2]: 
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Where t and t  denotes time and time step of integration. 
The central difference time integration scheme is stable 
if max/2  crtt , where max  is the largest frequency of 
the n degrees of freedom system. 

III. Numerical analysis 

A. Characteristics of model  
In this study, a rod with an additional concentrated mass 

has been considered as a one-dimensional model for 
investigation of the wave propagation based on RPIM as 
presented in Fig. 1. The capability of this approach and the 
effects of each parameter in multiquadric RBF have been 
studied to detection of additional mass. It has been assumed 
that the material is homogeneous and isotropic. 

The rod has the cross-section 0.0025 m2, Young’s 
modulus 200GPa and the mass density 7850 kg/m3. Damping 
matrix is applied as βKαMC   such a way 001.0,  . 
The length of the rod is 0.5m and is denoted by L and the 
position of additional mass is denoted by l from the left end. A 
Hanning-windowed sinusoidal wave with the frequency of 2 
kHz applies at the free end as an excitation signal which is 
shown in Fig. 2 in the time domain. 

The effects of number of nodes (Nnodes), position 
( Ll ) and magnitude of additional mass (M) and the 

variation of multiauadric parameters ( c , q) are parameters 
that are investigated in this study. 

 

Figure 1.  A rod with an additional mass 

 

Figure 2.  An excitation signal in time domain 

B. Study on number of nodes  
Since wave propagation is a multi-modal phenomenon 

involving vibrational high frequencies therefore considering 
high degrees of freedom is necessary. In present research, the 
rod has been modeled in four pattern of number of nodes 
(Nnodes): 50, 100, 150 and 200. In these pattern other 
parameters regarded as: 25.0 , %30M , 2C and 

2q . In view of the fact that damage detection is an inverse 
problem, therefore,   and M can be regarded as assigned 
damage. The obtained results in Fig. 3 represent the variation 
of longitudinal acceleration relative to rod length at 

st 015.0 . In this figure, the location of mass 25.0 are 
detected in distance 0.125m. It is obvious 50Nnodes yield 
no mass detection however by increasing the Nnodes, location 
of damage detected precisely.  

 

Figure 3.  Effect of number of nodes on acceleration at t=0.015 s. 
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Figure 4.  Effect of number of nodes on acceleration at t = 0.015 s. a) 125.0  b) 25.0  

C. Study on additional mass position 
The influence of the position of additional mass on wave 

propagation in the rod is obvious in Fig. 4a,b at st 015.0 . 
These figures represent the satisfactory capability of RPIM in 
additional mass detection distinctly. Constant parameters 
are 200Nnodes , %30M , 2C and 2q . 

D. Study on magnitude of additional 
mass  
Determination of damage quantity is one of the main parts 

in the structural health monitoring and the algorithm of 
damage assessment should be able to achieve damage 
quantity. In this paper, results are obtained based on additional 
mass magnitude equal to 1, 2 and 3% of the total rod mass. 
Fig. 5 shows the results in the distance 0.1 m because of the 
clearness of detection. Constant parameters are 200Nnodes , 

1.0 , 2C and 2q . 

 

Figure 5.  Effect of additional mass magnitude on acceleration at t=0.015 s.  

E. Study on shape parameter q,αc   
With respect to the presence of various RBFs and their 

parameters, implementation of appropriate basis function 
requires supplementary investigation and it cannot be decided 
definitely based on preliminary results. However, these results 
can be as primary options.  

Fig. 6 represents the effects of shape parameters on the 
wave propagation. It is concluded that by increasing the value 
of 0c , the authority of mass detection decreases such that 

0c  leads to distinguished detection.   

The analysis illustrates increasing of positive values for q 
causes notable detection but its value cannot be greater than 
2.01 because the analysis will be unstable and the interpolation 
cannot be work satisfactory. The other significant point is that 
the negative values for q which refer to the inverse 
multiquadric RBFs are not suitable for mass detection using 
wave propagation and no variation in wave is visible. It is to 
be noted 200Nnodes , 25.0 , %30M .  
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Figure 6.  Effect of shape parameters on longitudinal acceleration at 

t=0.015s. a) C  b) q  

IV. Conclusion 
A variety of numerical methods had been proposed for 

numerical modeling of wave propagation. This paper 
discussed about meshless modeling of wave propagation for 
additional mass detection in isotropic rods. RPIM as a RBF-
based meshless method represents appropriate application for 
shape function construction which does not have 
disadvantages of polynomial basis functions. In this study, 
multiquadric RBF adopted as a basis function of interpolation. 
The quantities including number of nodes, position, magnitude 
of additional mass and the variation of RBF parameters were 
studied. It has been demonstrated that this method is capable 
for wave propagation-based damage detection modeling 
however obtained results show that the selection of suitable 
RBF parameters requires supplementary investigation. 
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