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Abstract— This paper presents both analytical modeling and 

simulations based on finite element method of Pentacene Thin Film 

Transistors or Organic Thin Film transistors (PTFTs/OTFTs). 

Analytical modeling approach is introduced by using conventional 

transistor equations and finite element method using ATLAS two 

dimensional numerical device simulators. Both the methods shows a 

good agreement of output characteristic and parameters with 

experimental results. Further simulation is performed for top contact 

OTFT devices with different insulator materials while pentacene is 

used as organic semiconductor (OSC) material. A large variation has 

been observed for different insulators which insight the importance 

for right selection of the material during fabrication. It has been 

observed that the best results can be obtained for Hafnium oxide 

(HfO2) due to highest dielectric constant. Parameters such as current 

on-off ratio drain current and transconductance shows a variation of 

85% or more for different insulators. However, a minor change is 

achieved for mobility analysis. This analysis clarifies a number of 

issues that can help in design and fabrication of devices on flexible 

substrates. The simulated results are demonstrated in terms of 

performance parameters such as output and transfer characteristics, 

drain current, mobility, threshold voltage, ION/ IOFF and 

transconductance.  

Index Terms— Insulator, Mobility, Pentacene, Organic Thin Film 

transistors (OTFTs), Top contact OTFTs. 

I. INTRODUCTION

OTFT is likely to have suitable applications requiring 

large area coverage, structural flexibility and low cost which 

was not possible with crystalline silicon [1]. Fabrication of 

OTFTs at lower temperature allows  wide range of substrate 

possibilities and build organic transistors as future candidate 

for many low-cost electronics applications that require 

flexible polymeric substrates such as RFID tags, smart cards, 

electronic paper, touch screen mobile phones and active 

matrix flat panel displays [2]. However, the innovative human 

mind soon searched a novel class of TFTs based on organic or 

polymeric semiconductor as active layer material that shows 

amazing possibility for integration on flexible plastic 

substrates, thus giving the world an idea of futuristic 

technology of low cost, thin, printable electronics, strong, 

flexible and lightweight displays [3]. Organic transistor based 

circuits are potentially useful in number of applications where 

high speeds are not essential. Organic semiconductors are 

actually a new class of materials comprising small molecules 

and polymers with semiconducting properties [4]. 

Many organic semiconductor materials have been 

analyzed including pentacene, poly (3-octylthiophene) 

(P3OT), poly (3-alkylthiophene) (P3AT) and poly (3-

hexylthiophene) (P3HT) are the organic materials for 

semiconducting layer, but pentacene is the most extensively 

used organic material because of extensive reports on its 

performance [5]. Although, most of the works are focused on 

optimizing the organic semiconductor material in terms of 

higher carrier mobility, but it is desirable to use plastic 

substrates to achieve flexible display devices. To meet the 

goal, gate insulator material should be organic to reduce 

thermal stress induced by the difference in thermal expansion 

coefficient between TFT organic semiconductor layer and 

substrate. Organic polymers have good process ability and 

dielectric properties such as poly methyl methacrylate 

(PMMA), fluoropolymer and CYTOP. This paper reports the 

simulation of pentacene based TFT with various combinations 

of insulator material and illustrates the performance 

dependency on right selection of insulator material [6]. 

II. DEVICE DESIGN AND SIMULATION SETUP

A. Finite Element Type  Simulation 

An OTFT is a transistor composed of thin film of current 

carrying semiconductor, an insulator layer and three 

electrodes. The primary difference between the geometry of 

conventional MOSFETs and OTFTs is that organic material 

based device does not have a fourth terminal that is body, thus 

making these transistors free of the body effect. Secondly, in 

inorganic based devices have the conduction channel formed 

by an inversion layer while in OTFT, it is because of 

accumulation layer. Classification of organic thin film 

transistor is shown in Fig. 1 [7]. In the top contact device 

structure, source/drain electrodes are deposited on the 

semiconductor film, while in bottom contact devices, this 

deposition sequence is reversed [2, 4]. 

                                                  

Figure 1. (a) Classification of Organic or Pentacene Thin Film Transistors 

(OTFT/PTFTs) structures. 
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III. PARAMETERS EXTRACTION FOR DIFFERENT 

INSULATOR MATERIALS

We have done the simulation for various BGTC devices with 

pentacene as OSC, gold S/D contacts and different insulator 

materials to highlight the impact of insulator material on 

performance of OTFT. All the structures are simulated in the 

above organic module known as ATLAS environment with 

identical dimensions. The output and transfer characteristics 

of OTFT have been analyzed by use of proper boundary 

condition and physics of OTFTs [7]. Table-II includes the 

dielectric constant (D.C), calculated insulator capacitance 

(Ci), obtained maximum and minimum drain currents (IDmax 

and IDmin) for various insulator materials with pentacene 

organic semiconductor. 

           (a) 

 (b) 

Figure 4. (a) ID-VDS curves at constant VGS=-3V (IDmax), (b) ID-VGS curves at 

constant VDS=-1.5V for structures containing pentacene, Au contacts, Al gate 

and various insulator materials.  

From the table-II and Fig. 4 (a) and 4 (b) it is clear that 

at VGS=-3V, the highest current (22 μA) is obtained for HfO2

insulator with pentacene as semiconductor. The leakage 

current is also minimum (0.005 pA) for this combination due 

to maximum dielectric constant hence maximum gate 

capacitance. The characteristic performance of devices is 

evaluated in terms of various extracted parameters like 

mobility, threshold voltage, transconductance, on-off current 

ratio and subthreshold slope. 

TABLE II. DIELECTRIC CONSTANT (D.C.), CAPACITANCE, MAXIMUM (IDMAX)

AND MINIMUM (IDMIN) DRAIN CURRENTS FOR DIFFERENT INSULATOR 

MATERIALS WITH PENTACENE.

Material combinations 

(OSC, Ins, S/D, Gate) 

D.

C.

Ci
(μF/cm2)

IDmax
(μA) 

IDmin
(pA) 

Pentacene, Al2O3+ SAM, Au, Al 4.5 0.7 -5.1 -0.13 

Pentacene, HfO2, Au, Al 22 3.4 -22 -0.005 

Pentacene, Fluoropolymer, Au, Al 2.1 0.33 -2.6 -1.8 

Pentacene, PMMA, Au, Al 3.5 0.54 -4.1 -0.29 

Pentacene, CYTOP, Au, Al 2.2 0.34 -2.7 -1.5 

Pentacene, SiO2, Au, Si 3.9 0.61 -6.2 -42 

Pentacene, Al2O3, Au, Al 9.1 1.41 -9.8 -0.02 

                      

A. Mobility, Threshold voltage and Transconductance 

The transistor requires larger mobility for reliable 

operation [11]. The bias dependent mobility, expressed as 

power law for organic thin film transistor is given by: 

             μ (VGS) = μ0 (VGS – VT)                             (4) 

     (a)                                            

 (b) 

Figure 5. (a) Mobility in saturation region (μsat), (b) Mobility in linear region 

(μlin), for structures containing pentacene, Au contacts, Al gate and various 

insulator materials.  

460



Proc. of the Intl. Conf. on Advances in Electronics, Electrical and Computer Science Engineering — EEC 2012

where μ0 is reference mobility of material at low 

overdrive voltage (VGS-VT) about 0.5V and  is mobility 

enhancement factor. The parameter  is usually estimated in 

the range of ~ 0.2 – 0.5 for different OTFTs.  is a result of an 

exponential trap distribution with characteristic temperature 

(Tc) at absolute temperature (T) with relation  = (Tc - T) / T

[11].

We have evaluated the saturation and linear region 

mobility from transfer characteristics of OTFT as shown in 

Fig. 5 (a) and (b), respectively using standard equation of 

field effect mobility (μ) and transconductance (gm). 

                                                                   (5) 

                   μ                                               (6) 

                  μ                                  (7) 

where gm is transconductance and   is slope of the curve 

[7].

(a) 

                              
(b)

Figure 6. (a) Transconductance (gm) and (b) Threshold voltage (VT)

From Fig. 5 (a) and Fig. 5 (b) it can be analyzed that 

linear region mobility is almost constant for all combinations 

where as saturation region mobility shows slight variation 

about 16%. Mobility should increase for insulators containing 

lower dielectric constant and hence lower capacitance as per 

relation given in (5) and (6). But we have observed decreasing 

slope values with respect to decreasing dielectric constant. 

Due to which the effect is nullifying and extracted mobility is 

constant. 

The transconductance should be high as it shows drain 

current modulation in variation with gate voltage. It is 

extracted from relation shown in (5) shows positive variations 

as moved to the insulator material of higher dielectric constant 

(D.C.) as shown in Fig. 6 (a). The minimum gate voltage at 

which the OTFT begins to conduct is called threshold voltage 

(VT). As shown in Fig. 6 (b), VT is lowest (-0.94V) for SiO2

insulator material structure with silicon as gate. For further 

Structures, VT is higher due to difference in work function of 

gate metal i.e. aluminum and other insulators. It can be further 

improved by optimize the gate material, doping concentration 

and thickness of insulator material [11].  

B. On/off (Ion/Ioff ) Current Ratio and Subthreshold slope 

Ion/Ioff is ratio of current in the accumulation mode over 

current in the depletion mode [11].  

(a)                                            

 (b) 

Figure 7. (a) Current On/off (Ion/Ioff) ratio and (b) Sub-threshold slope 
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ION is drain current above threshold voltage VT at which 

saturation takes place and IOFF is the drain current below 

threshold Voltage [11]. The extracted current on/off ratio is 

highest (4.4×109) for HfO2 insulator due to maximum on 

current (22 μA) and minimum off current (0.005 pA) values 

as depicted in Fig. 7 (a). Sub-threshold slope is the ratio of 

change in gate voltage to the change in drain current on log 

scale at constant drain voltage. It is an important parameter 

which explains how best we can use transistor as a switch. As 

per results plotted in Fig. 7 (b) switching behavior of OTFT is 

better for HfO2, PMMA and Al2O3 insulators as sub-threshold 

slope is lower (approx 90mV/dec.) for these material 

combinations with pentacene. 

TABLE III. PERCENTAGE VARIATION IN EXTRACTED PARAMETERS FOR 

VARIOUS OTFTS STRUCTURES WITH DIFFERENT INSULATORS.

Performance parameters Variation range % 

variation 

Max. drain current, IDmax (A) at 

VGS=-3V 

-2.61e-6  to  -2.26e-5  88.4 

Min. drain current, IDmin (A) at 

VGS=0V 

-5.14e-15 to  -4.22e-11 97 

Mobility, μsat (cm2/V.s) 0.337 to 0.392  16.3 

Mobility, μlin ( cm2/V.s) 0.349 to 0.355  1.7 

Capacitance Ci (μF/cm2) 0.33 to 3.4  90.2 

Threshold, VT (V) -0.94 to -1.18  25.5 

Current on-off ratio, ION/IOFF 1.4e5 to 4.4e9  97 

Sub-threshold slope, SS

(mV/dec) 

89 to 139  56 

Transconductance, gm ( S) 1.82e-6 to 1.9e-5 89 

IV. CONCLUSION

Simulation results analyze different performance parameters 

of pentacene TFTs with different insulator materials. From 

Table III, it has been observed that parameters shows large 

percentage variation for different insulators which insights the 

importance for right selection of the material during 

fabrication. The performance parameters such as ION/IOFF, ID

and gm shows more than even 85% variation as moved from 

one insulator to another. Basically for a particular organic 

semiconductor, variations in mobility can be observed with 

respect to doping concentration, mobility enhancement factor 

(�) and overdrive voltage. Maximum ON and minimum OFF 

current are obtained as 22 μA and 0.005pA respectively for 

HfO2 insulator material due to highest dielectric constant and 

thus maximum capacitance value is achieved. An organic 

device with fluoropolymer and CYTOP insulator shows 

minimum VT which is desirable for low voltage operation of 

OTFTs. Best switching scenario has been seen for SiO2

insulator with silicon as gate electrode. Most of the results are 

in favor of HfO2 insulator and observed as optimized material 

for insulator layer with pentacene as organic semiconductor. 
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