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Abstract— This work presents a lancet type residual stress 

measurement test structure which comprises of a pair of bent beams 

along with cantilevers as driving bars for the rotational pointer 

structure. The residual stress causes the bent beams to deflect each 

other, thereby magnifying the pointer deflection. The pointer 

deflection direction indicates the type of stress (compressive or 

tensile), with the displacement being independent of Young’s 

modulus and film thickness.  Finite element modeling also used to 

analyze the structure and is compared with experimental results of 

electroplated Au structures.  
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I.  INTRODUCTION  

Residual stress measurement in thin films is a major 

concern related to the reliable operation of MEMS. Various 

methods have been published to extract the residual stress in 

polysilicon [1-3] and other materials such as SiO2 and SixNy

[3]. Nowadays metallic film membranes of material like Au, 

Ni are also being used in a range of MEMS applications [4, 5] 

such as metallic beams or cantilevers in RF MEMS. The 

robustness of thin metallic film is affected by compressive or 

tensile residual stress [6-9]. Measuring and controlling stress 

in these films is an essential element to ensure reliable 

microsytem and microelectronic structures. 

II. TEST STRUCTURE 

This paper reports study of residual stress in thin metallic 
film composed of electroplating gold using lancet type 
structures [10] schematic as shown in figure 1 and 2 
respectively. These structures consist of a pair of bent beams 
(tilted beams) with an apex cantilever (driving bar) at mid 
points and a rotational pointer. This structure has the 
advantage that it magnifies the pointer rotation by 10 times 
compared with other pointer test structures [5-9].  The 
magnifying pointer displacement gives the residual stress 
present in the material [11-13]. Lancet structures (symmetric 
and asymmetric) types have been fabricated in CEERI as part 
of an RF MEMS switch fabrication run [14].  Both types of 
structures are released by removing a sacrificial layer of 
photoresist in oxygen plasma. Figure 3 and 4 shows a SEM 
micrograph of a resulting asymmetrical and symmetrical 
lancet structure. The interdigitated structures associated with 
the end of the pointer arms are a designed to enable 
capacitance measurement of pointer deflection. 

Figure 1 Conceptual schematic of the asymmetric lancet test structure. 

Figure 2 Conceptual schematic of the symmetric lancet with magnify image 
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Figure 5 Simulated result of the displacement versus tilt angle 
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Figure 6 Pointer displacement as a function of residual strain both FEM 
and analytical models (Asymmetric Lancet) 
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Figure 7 Pointer displacement as a function of residual strain both FEM 
and analytical models (Symmetric Lancet) 

Figure 8 Simulated results of asymmetric lancet structure used to determine 
the maximum stress and displacement 

Figure 9 Simulated results of symmetric lancet structure used to 
determine the maximum stress and displacement 

V.  EXPERIMENTAL RESULTS 

A SEM micrograph of a fabricated asymmetric and 

symmetric lancet structure is shown in figure 3 and 4. The 

pointer displacement was measured using SEM and also 

verified using an optical interferometer. As mentioned 

previously these structures were fabricated as part of a RF 

switch technology and significant variation was observed 

between measured test structures. A typical measured pointer 

deflection was 20μm and using the analytical expression the 

residual stress was calculated to be 200MPa, which indicates 

the resolution of structure is 10MPa/μm. The observed pointer 

displacement in asymmetric structures varied between 20-

78μm whereas for symmetric structures this was 10-50μm. It 

would be expected that there would be spatial stress variation 

resulting from the electroplating process which has previously 

been reported for permalloy films [15]. Another source of 

stress variation may be related to the different ashing 

processes used during the development to release the RF 

switches.

VI. CONCLUSIONS 

Simulation and in-situ stress measurements of 

electroplated gold asymmetric and symmetric lancet structures 
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have been reported and their relative merits are discussed. The 

symmetric pointer structure seems to be better choice due to 

maximum pointer displacement and less stress variation. A 

typical measured pointer deflection was 50μm and using the 

analytical expression the residual stress was calculated to be 

226MPa, which indicates the resolution of structure is 5 

MPa/μm.   
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