
Load Balancing in Mobile Ad Hoc Networks

by Using Different Routing Protocols and

Algorithms

Abstract: An ad-hoc network consists of a set of

mobile nodes which are connected with each

other by using radio waves. Load balancing is

the process of improving the performance of a

parallel. This network does not have any

infrastructure or central administration, hence it

is called infrastructure less network. As the

nodes are mobile, it is very difficult to find the

path between two end points. This paper presents

a solution for finding path between nodes in

mobile ad hoc network. For maintaining multiple

routes between two endpoints on top of the

Stream Control Transmission Protocol (SCTP),

and the Dynamic Source Routing (DSR)

protocol. A number of additional modifications

are incorporated to the SCTP protocol in order to

allow its smooth operation. Some of the

parameters used to evaluate its performance are

packet delays and throughput. The results of this

algorithm shows better throughput as compared

to existing algorithms. In this paper we present

the performance analysis of various load

balancing algorithms based on different

parameters, considering two typical load

balancing approaches static and dynamic. The

analysis indicates that static and dynamic both

types of algorithm can have advancements as

well as weaknesses over each other. Deciding

type of algorithm to be implemented will be

based on type of parallel applications to solve.

The main purpose of this paper is to help in

design of new algorithms in future by studying

the behavior of various existing algorithms.

Keywords—Load balancing (LB), SCTP, DSR,

distributed systems, Static Load balancing,

Dynamic Load Balancing

1. INTRODUCTION

Mobile Ad hoc network is self configuring

network of mobile hosts connected by wireless

links, the union of which forms the topology of

the network [1]. The advantages of ad hoc

networks are the convenience (no central

administration), mobility, productivity,

deployment and expandability. As the nodes in

the network are mobile, the topology of network

changes unpredictably. Hence it is difficult to

generate path between two nodes. This paper

deals with the development of on-demand ad-hoc

network routing which can achieve load

balancing for packet switched network. The

algorithm is adaptive, distributed and is inspired

by swarm intelligence. Ant algorithms are the

class of optimizing algorithms under swarm

intelligence (SI)[2][3]. Routing in ant algorithm

[4][5] is through interaction of network

exploration agents called ants. According to this

algorithm, a group of mobile agents builds path

between pairs of nodes by exchanging

information and updating routing tables.

MANET networks have several usages. First

these networks were devised to be used in

military applications. MANET networks are

mostly used in survey, helping and saving

operations, tracing and operations, scientific

conferences.

Minakshi
Department of Computer

Science & Engineering

Sai Institute of Engineering and

Technology
Amritsar, 143001

er.mina08@yahoo.com

Prof. R.K Singh

Professor & OSD

Uttarakhand Technical

University

Dehradun, India

rksinghkec12@rediffmail.com

Tanu Preet Singh

Research Scholar Student,

Uttarakhand Technical

University,

Dehradun, India

tanupreet.singh@gmail.com

Proc. of the Intl. Conf. on Advances in Electronics, Electrical and Computer Science Engineering — EEC 2012
Edited by Dr. R. K. Singh.
Copyright © Institute of Research Engineers and Doctors. All rights reserved.
ISBN: 978-981-07-2950-9 doi:10.3850/ 978-981-07-2950-9 622

251

Proc. of the Intl. Conf. on Advances in Electronics, Electrical and Computer Science Engineering — EEC 2012

The problem of mobile ad-hoc network

(MANET) can be summarized in the answer of

this question: how to find the route between the

communicating end-points. One of the main

reasons is that routing in MANETs is a

particularly challenging task due to the fact that

the topology of the network changes constantly

and paths which were initially efficient can

quickly become inefficient or even infeasible.

Moreover, control information in the network is

very restricted. This is because the bandwidth of

the wireless medium is very limited, and the

medium is shared. It is therefore important to

design algorithms that are adaptive, robust and

self-healing. Moreover, they should work in a

localized way, due to the lack of central control

or infrastructure in the network [6,8].

A major challenge this work faces is to provide

an appropriate localization-free1 definition of the

center of the network, using the topology

information available at every node. Since the

topology information may be exhaustive

(proactive protocols) or partial (reactive

protocols), we had to consider each case

separately. The main goal is to distribute the jobs

among processors to maximize throughput,

maintain stability, resource utilization and should

be fault tolerant in nature. Local scheduling

performed by the operating system consists of

the distribution of processes to the time-slices of

the processor. On the other hand Global

scheduling is the process of deciding where to

execute a process in a multiprocessor system.

Figure1: MANET

2. OVERVIEW OF PROTOCOLS

A simple DSR is a simple source routing

protocol for MANETs, in which route caching is

heavily used. If the route to the destination is not

known, a route discovery process is initiated in

order find a valid route. Route discovery is

based in flooding the network with route request

(RREQ) packets. Every mobile host that receives

a RREQ packet checks the contents of its route

cache, and if it is the destination or it has a route

to the destination it replies to the RREQ with a

route reply (RREP) packet that is routed back to

the original source. In case none of the above

holds, the host that received the RREQ re-

broadcasts it to its neighborhood. In this way the

RREQ message is propagated till the destination.

Note that both RREQ and RREP packets are also

source routed. The RREQ message maintains the

path traversed across the network allowing thus

the RREP message to route itself back to the

source by traversing the recorded path

backwards. The route carried back by the RREP

packet is cached at the source for future use. If

any link on a source route is broken, the source

host is notified with a special route error (RERR)

packet from intermediate nodes. When the

source gets this packet removes any route using

this link from its cache. More details and

enhancement to this basic DSR operation can be

found in [9].

SCTP was recently adopted by IETF, and is a

reliable transport protocol that operates on top of

a connectionless packet based network such as

IP. One of the most important new ideas that

SCTP introduced is that of multi-homing. A

single SCTP association (session), is able to use

alternatively anyone of the available IP-

addresses without disrupting an ongoing session.

However, this feature is currently used by SCTP

only as a backup mechanism that helps

recovering from link failures.

SCTP maintains the status of each remote IP

address by sending Heartbeat messages and it is

thus able to detect a specific link failure and

switch to another IP address. Another novel

feature is that SCTP decouples reliable delivery

from message ordering by introducing the idea of

streams. The stream is an abstraction that allows

applications to preserve in order delivery within

a stream but unordered delivery across streams.

This feature avoids HOL blocking at the receiver

in case multiple independent data streams exist

in the same SCTP session. Congestion control

was defined similar to TCP, primarily for

achieving TCP friendliness [10].

In this paper, we propose two methods to

Improve the Ad-Hoc On-Demand Distance-

Vector (AODV) protocol. The main goal in the

design of the protocol was to reduce the routing

overhead, buffer overflow, end-to-end delay and

increase the performance. A multi-path routing

protocol is proposed which is based on AODV

252

Proc. of the Intl. Conf. on Advances in Electronics, Electrical and Computer Science Engineering — EEC 2012

and Ant Colony Optimization(ACO). This

protocol is refereed to Multi-Route AODV Ant

routing (MRAA). Also we propose a load

balancing method that uses all discovered paths

simultaneously for transmitting data. In this

method, data packets are balanced over

discovered paths and energy consumption is

distributed across many nodes through network.

3. ALGORITHM

3.1 STATIC LOAD BALANCING

In this method the performance [11] [12] of the

processors is determined at the beginning of

execution. Then depending upon their

performance the work load is distributed in the

start by the master processor. The slave

processors calculate their allocated work and

submit their result to the master. A task is always

executed on the processor to which it is assigned

that is static load balancing methods are non-

preemptive. The goal of static load balancing

method is to reduce the overall execution time of

a concurrent program while minimizing the

communication delays. A general disadvantage

of all static schemes is that the final selection of

a host for process allocation is made when the

process is created and cannot be changed during

process execution to make changes in the system

load.

A. Round Robin and Randomized Algorithms

In the round robin [13] processes are divided

evenly between all processors. Each new process

is assigned to new processor in round robin

order. The process allocation order is maintained

on each processor locally independent of

allocations from remote processors. With equal

workload round robin algorithm is expected to

work well. Round Robin and Randomized

schemes [12] work well with number of

processes larger than number of processors.

Advantage of Round Robin algorithm is that it

does not require inter-process communication.

Round Robin and Randomized algorithm both

can attain the best performance among all load

balancing algorithms for particular special

purpose applications. In general Round Robin

and Randomized are not expected to achieve

good performance in general case.

B. Central Manager Algorithm

In this algorithm [14], A central processor selects

the host for new process. The minimally loaded

processor depending on the overall load is

selected when process is created. Load manager

selects hosts for new processes so that the

processor load confirms to same level as much as

possible. On hand information on the system

load state central load manager makes the load

balancing judgment. This information is updated

by remote processors, which send a message

each time the load on them changes. This

information can depend

on waiting of parent’s process of completion of

its children’s process, end of parallel execution.

The load manager makes load balancing

decisions based on the system load information,

allowing the best decision when of the process

created. High degree of inter-process

communication could make the bottleneck state.

This algorithm is expected to perform better than

the parallel applications, especially when

dynamic activities are created by different hosts.

C. Threshold Algorithm

According to this algorithm, the processes are

assigned immediately upon creation to hosts.

Hosts for new processes are selected locally

without sending remote messages. Each

processor keeps a private copy of the system’s

load. The load of a processor can characterize by

one of the three levels: under loaded, medium

and overloaded. Two threshold parameters

tunder and tupper can be used to describe these

levels.

Under loaded - load < tunder

Medium - tunder load tupper

Overloaded - load > tupper

Initially, all the processors are considered to be

under loaded. When the load state of a processor

exceeds a load level limit, then it sends messages

regarding the new load state to all remote

processors, regularly updating them as to the

actual load state of the entire system. If the local

state is not overloaded then the process is

allocated locally. Otherwise, a remote under

loaded processor is selected, and if no such host

exists, the process is also allocated locally.

Thresholds algorithm have low inter process

communication and a large number of local

process allocations. The later decreases the

overhead of remote process allocations and the

overhead of remote memory accesses, which

253

Proc. of the Intl. Conf. on Advances in Electronics, Electrical and Computer Science Engineering — EEC 2012

leads to improvement in performance. A

disadvantage of the algorithm is that all

processes are allocated locally when all remote

processors are overloaded. A load on one

overloaded processor can be much higher than

on other overloaded processors, causing

significant disturbance in load balancing, and

increasing the execution time of an application.

3.2 DYNAMIC LOAD BALANCING

It differs from static algorithms in that the work

load is distributed among the processors at

runtime. The master assigns new processes to the

slaves based on the new information collected

[15]. Unlike static algorithms, dynamic

algorithms allocate processes dynamically when

one of the processors becomes under loaded.

Instead, they are buffered in the queue on the

main host and allocated dynamically upon

requests from remote hosts.

A. Central Queue Algorithm

Central Queue Algorithm [16] works on the

principle of dynamic distribution. It stores new

activities and unfulfilled requests as a cyclic

FIFO queue on the main host. Each new activity

arriving at the queue manager is inserted into the

queue. Then, whenever a request for an activity

is received by the queue manager, it removes the

first activity from the queue and sends it to the

requester. If there are no ready activities in the

queue, the request is buffered, until a new

activity is available. If a new activity arrives at

the queue manager while there are unanswered

requests in the queue, the first such request is

removed from the queue and the new activity is

assigned to it. When a processor load falls under

the threshold, the local load manager sends a

request for a new activity to the central load

manager. The central load manager answers the

request immediately if a ready activity is found

in the process-request queue, or queues the

request until a new activity arrives.

B. Local Queue Algorithm

Main feature of this algorithm [16] is dynamic

process migration support. The basic idea of the

local queue algorithm is static allocation of all new

processes with process migration initiated by a host

when its load falls under threshold limit, is a user-

defined parameter of the algorithm. The parameter

defines the minimal number of ready processes the

load manager attempts to provide on each

processor. Initially, new processes created on the

main host are allocated on all under loaded hosts.

The number of parallel activities created by the first

Parallel construct on the main host is usually

sufficient for allocation on all remote hosts. From

then on, all the processes created on the main host

and all other hosts are allocated locally. When the

host gets under loaded, the local load manager

attempts to get several processes from remote hosts.

It randomly sends requests with the number of local

ready processes to remote load managers. When a

load manager receives such a request, it compares

the local number of ready processes with the

received number. If the former is greater than the

latter, then some of the running processes are

transferred to the requester and an affirmative

confirmation with the number of processes

transferred is returned.

TABLE I

PARAMETRIC COMPARISON OF ROUND

ROBIN AND RANDOM LOAD BALANCING

ALGORITHMS

Parameters Round Robin Random

Overload Rejection No No

Fault Tolerant No No

Forecasting Accuracy More More

Process Migration No No

Cooperative No No

Stability Large Large

Resource Utilization Less Less

TABLE II

PARAMETRIC COMPARISON OF LOCAL

QUEUE AND CENTRAL QUEUE LOAD

BALANCING ALGORITHMS

Parameters Local

Queue

Central

Queue

Overload Rejection Yes Yes

Fault Tolerant Yes Yes

Forecasting Accuracy Less Less

Process Migration Yes No

Cooperative Yes Yes

Stability Large Small

Resource Utilization More Less

TABLE III

PARAMETRIC COMPARISON OF CENTRAL

MANAGAR AND THRESHOLD LOAD

BALANCING ALGORITHMS

254

Proc. of the Intl. Conf. on Advances in Electronics, Electrical and Computer Science Engineering — EEC 2012

Parameters Central

Manager

Threshold

Overload Rejection No No

Fault Tolerant Yes No

Forecasting Accuracy More More

Process Migration No No

Cooperative Yes Yes

Stability Large Large

Resource Utilization Less Less

4. CONCLUSION

Load balancing algorithms and protocols work

on the principle that in which situation workload

is assigned, during compile time or at runtime.

The above comparison shows that static load

balancing algorithms are more stable in compare

to dynamic and it is also ease to predict the

behavior of static, but at a same time dynamic

distributed algorithms are always considered

better than static algorithms.

REFERENCES

[1] Andrew S Tannenbaum, “Computer

Networks”, 4th Edition, Prentice-Hall of India

[2] E. Bonabeau, M. Dorigo, and G. Théraulaz,

Swarm intelligence: from natural to artificial

systems, Oxford University Press, 1999.

[3] T. White, "Swarm intelligence and problem

solving in telecommunications", Canadian

Artificial Intelligence Magazine, spring, 1997.

International Journal of Next-Generation

Networks (IJNGN),Vol.1, No.1, December 2009.

[4] G. Di Caro and M. Dorigo, "Mobile agents

for adaptive routing", Proc. 31st Hawaii

International Conference on System Sciences,

IEEE Computer Society Press, Los Alamitos,

CA, pp. 74-83, 1998.

[5] Schoonderwoerd R, Holland O, Bruten J,

Rothkrantz L. “Ant-Based load Balancing in

telecommunications networks, Adaptive

Behavior Hewlelt-Packard Laboratories, Bristol-

England, pp 162-207, 1996.

[6] G. Di Caro and M. Dorigo, AntNet:

distributed stigmergetic control for
communications networks, Journal of Artificial

Intelligence Research, 9 (1998), 317–365.

[7] G. Di Caro, F. Ducatelle, and L. M.

Gambardella, AntHocNet: an adaptive nature-

inspired algorithm for routing in mobile ad hoc

networks, Tech. Report IDSIA-27-04-2004,

Dalle Molle Institute for Artificial Intelligence

(IDSIA), Manno-Lugano, Switzerland,

September 2004.

[8] M. Dorigo and G. Di Caro, The ant colony

optimization metaheuristic,in New Ideas in

Optimization, D. Corne, M. Dorigo, and F.

Glover, eds., McGraw-Hill, London, UK, 1999,

11–32. [8] Macker. J and Corson. S, Mobile ad

hoc networks (MANET), 1997,

http://www.ietf.org/html.charters/manet/charter.h

tml.

[9] D.B. Johnson, D.A. Maltz, Y.-C. Hu, The

dynamic source routing protocol for mobile ad

hoc networks (DSR). Available from:

<http://www.ietf.org/internet-drafts/draftietf-

manet-dsr-09.txt>. [10] Toh.C-K., Ad Hoc

Mobile Wireless Networks: Protocols and

Systems (Prentice-Hall, New York, 2002).

[10] R.R. Stewart et al., Stream control

transmission protocol, RFC 2960, October 2000.

[11] Derek L. Eager, Edward D. Lazowska ,

John Zahorjan, “Adaptive load sharing in

homogeneous distributed systems”, IEEE

Transactions on Software Engineering, v.12 n.5,

p.662-675, May 1986.

[12] R. Motwani and P. Raghavan, “Randomized

algorithms”, ACM.

[13] Zhong Xu, Rong Huang, "Performance

Study of Load Balancing Algorithms in

Distributed Web Server Systems", CS213

Parallel and Distributed Processing Project

Report.

[14] P. L. McEntire, J. G. O'Reilly, and R. E.

Larson, Distributed Computing: Concepts and

Implementations. New York: IEEE Press, 1984.

[15] S. Malik, “Dynamic Load Balancing in a

Network of Workstation”, 95.515 Research

Report, 19 November, 2000.

[16] William Leinberger, George Karypis, Vipin

Kumar, "Load Balancing Across Near-

Homogeneous Multi-Resource Servers", 0-7695-

0556-2/00, 2000 IEEE.

255

