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Abstract—In 1989 Wilber [2] conjecture a lower bound O (log 
n) for a query using any balanced existing binary search tree 
with static data. Later in 2004 Demaine et al.., [1] Came up 
with new lower bound O (loglogn) called interleave lower 
bound and he also claimed that these two lower bound O (log 
n) and O (loglogn) acts as a good tight intervals for any binary 
search tree. 

Tango tree was recently introduced by Demaine et al., [1], 
having O (loglogn) - competitive ratio. Tango tree [1] supports 
only lookup (search) operations, where most of the online 
algorithms (like dictionary problem, a cache problem, adaptive 
data compression, etc.,) need additions and removals of 
collections (key, value) too, which are not supported by tango 
trees [1].  

In this paper, we propose a new upgraded version of tango 
tree which supports addition and removal of collections (key, 
value) dynamically without knowing the sequence before hand 
in O (loglogn) time. We show run-time analysis with 
experimental results. We also show theoretically how these 
algorithms achieve O (loglogn) -competitive dynamic interleave 
bound. 

 
Keywords- Binary search tree; Red-black tree; Splay tree; 

Tango tree; O(1)-competitive conjecture. 

I.  INTRODUCTION 

          A dictionary is a basic data structure that is 
capable of storing (storing objects in sorted order based on 
keys as a string or integers which appears at most once, 
composed of a collection of (key, value) pairs) and 
retrieving information. This abstract data type is one of the 
most important structures in computer sciences.  
Operations associated with this data type allow: 

• The addition of pairs to the collection. 

• The removal of pairs from the collection. 

• The modification of the values of existing pairs. 

• The lookup of the value associated with a particular key. 

Binary search tree (BST) provides data structures which 
efficiently support all dictionary operations, with flexibility 
and adaptability to a large number of purposes.  

In the last decade many different BST data 
structures have been developed which perform these data 
type dictionary operations (associative array, map, etc.) In Ω 
(log n) time, where n is no of elements in the tree. For a 
specific access sequence (x1, x2 ……. xm) there can be any 
BST algorithm which required a total running time of O 
(mlogn). This disparity however does not rule out the 
possibility of having an instance optimal BST, through 

competitive analysis: for any access sequence (x), let OPT 
(X) denotes the minimal cost for executing the access 
sequence X by any BST algorithm to serve it. A given BST 
algorithm A has a competitive ration of α for all sequences 
of operations X, we have COSTA <= αCOSTOPT (X). 

In 1985, Sleater and Tarjan [3] developed a BST 
called splay tree, as “Best BST” which they conjecture to be 
O (1) -competitive. However, they are later known to be O 
(log n) competitive ratio. So, this led researcher’s looking at 
the efficiency of BST’s on different input sequence has 
grown out of this conjecture and to search for a BST which 
is optimal (or close to optimal) on any sequence of the 
search which has grown out of this conjecture. Given splay 
trees have a number of remarkable properties like , 
including the Balance Theorem [3], the Static Optimality 
Theorem [3], the Static Finger Theorem [3], The Working 
Set Theorem [3], the Scanning Theorem [5], the Sequential 
Access Theorem [5, 7], and the Dynamic Finger Theorem 
[10, 11]. They are a natural candidate for the dynamic 
optimality. The Dynamic Optimality Conjecture [3] states 
that for any sequence of accesses, the cost of splay trees on 
that sequence of accesses is within a constant factor of any 
other binary search tree algorithm for processing that 
sequence of accesses. That is, it states that splay trees are O 
(log n) competitive [3] for some constant. However, over 
decades of research, still the conjecture is open for research. 

After several attempts solve it for about 20 years, 
this situation was recently improved by Demaine et al., [1] 
Developed an O (loglogn) -competitive BST structure, 
called tango tree, suggested searching for alternative binary 
search tree algorithm which has a small, but non constant 
competitive factor, they proposed tango. This was the first 
major improvement in O (loglogn) competitive ratio over 
previous (trivial) competitive ratio of O (logn) upper bound, 
after Slater and Tarjan [3] progress on dynamic optimality. 
 In the journal version of seminal papers on tango 
trees Demaine et al., [1] stated tango as a static tree with 
dynamic search which doesn’t support insertion and 
deletion. In this paper we came up with the upgraded 
version of tango as dynamic tango tree which support both 
insertion and deletion in O (loglogn) time. 
 The rest of the paper is organized as follows: In 
section II, we discuss BST model and stated its lower bound 
on OPT (X) developed for competitive ratio. In section III, 
we defined the data structure of the tango tree. In section IV, 
we discuss that tango algorithm. In section V, we upgrade 
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tango tree called the dynamic tango tree which support both 
insertion and deletion over the same tango tree. 

II.  BST MODEL 

In this paper, we used the BST model which was 
defined by Wilber [2]. Every node keeps a key from a 
totally ordered universe which obeys in-order at any node. 
Basically an online BST data structure argument each node 
in a BST with additional data. Each unit cost operation 
changes the pointer referentially of the node to that new 
node pointer. The access algorithm’s choice of the next 
operation to perform is a function of the data and augmented 
data stored in the node currently pointed to. In general the 
behavior of the algorithm depends on the past. The amount 
of argument information should be as small as possible. For 
example, red-black trees use one bit [4] and splay tree do 
not use any [3]. 

A.  Optimality 

Consider any BST data structure that executes any 
particular access sequence X optimally [9]. Let the cost per 
operation made by fastest BST data Structure for X is 
denoted as OPT (X). In other words any fastest offline BST 
algorithm can execute X in OPT (X), as the model doesn’t 
restrict its next move from a BST access algorithm because 
it depends on the future access to come. Standard balanced 
BST establishes that OPT (X) = O (mlogn). In some closer 
of access sequence X (x1, x2 ……. xm) Wilber [2] proved OPT 
(X) = Ω (mlogn). 

A BST data structure is said to be dynamically 
optimal, only by the execution of all the sequences of X in 
time O (OPT (X)). Apart from this, it is still a query that 
such a data structure exists. BST data Structure is c-
competitive if it executes all sequence X in time at most 
cOPT(X). Finally this model has O (log log n) augmented 
bits. 

The main objective of the line of research is to 
design a dynamically optimal O(1)-competitive) online BST 
data structure that uses O(1) augmented bits per node. The 
result would be a single, asymptotically best BST data 
structure. 

B. Interleave Lower Bound 

 Given any BST data structure (To) and a m-element 
access sequence X (x1, x2 ……. xm), time taken by To to 
execute X, depends only on X. This lower bound is said to 
be interleaved lower bound. Interleave lower bound is a 
slight variation of Wilber [2] first bound OPT (To, X). This 
lower bound is also similar to lower bound that follows 
from partial sums in the semi group model [8, 10].  
 Let’s consider a perfect binary tree P on the keys 
{1, 2, 3 …..  n} for accessing the sequence X, we denoted 
interleave lower bound as IB(P,X). For each node y in P, 
left region of y is defined as y plus all nodes of the y’s left 
subtree in P and similarly right region of y is defined as all 
nodes of the y’s right subtree in P. Next, label each access in 

the restricted sequence X over P.  We label each access 
sequence xi as left/right based on its region over y, 
discarding all the access outside y’s in P. Amount of 
interleave IB(P,X,V) is no of the times the label switches 
between left and right. Interleave bound IB (X) is the sum of 
these interleave amounts over all node y in P. 
Theorem 1: IB (X) /2-and are a lower bound on OPT (X). 
The cost of the optimal offline BST that serves access 
sequence X. 

OPT(To,X) >= IB(P,X)/2-O(n) + m 

III. THE TANGO TREE DATA STRUCTURE 

 Consider a static balanced BST of height O (logn) 
which is made on a set of n nodes, refer this tree as 
reference tree P. The depth of any node in P is atmost 
2log(n+1) as we consider P as balanced tree. At any point of 
time each node in P has a preferred child may be its left 
child or right child. In other words we can state that 
preferred child of node y in P would be left node or right 
node based on the last access to a node within y’s subtree in 
P was in left region of y (including y) or right region of y 
respectively. After executing the access sequence X (x1, x2 

……. xm), the state of P is changed to Pm over augmented 
perfect binary search tree. The structure of the reference tree 
P is static (we are going to modify it to support insertion and 
deletion in next section) only preferred child changed over 
time.  

 
Figure 1. Balanced red-black with preferred paths using link-

cut algorithm, total n/2 preferred paths. 

      We form a preferred path by joining all the 
preferred child chain from the root to its preferred child and 
to its preferred child and so on, until we reach a node which  
doesn’t have a preferred child. Preferred path will contain at 
most O (logn) preferred child’s which is height of P. We 
remove preferred from P, which makes the P into pieces of 
set of preferred paths. We generate a new balanced BST 
using these preferred paths which are called as Auxiliary 
tree has atmost (logn) nodes with height O(loglogn). Each 
node in Auxiliary tree we maintain its depth in P (used to 
maintain symmetric between reference tree and tango tree), 
min and max depth of the subtree over the nodes in auxiliary 
tree and isRoot bit that indicates its child is apart from the 
other auxiliary tree. We maintain the auxiliary tree as red-
black tree which has a constant factor overhead [4]. The 
leaves of the auxiliary tree link to the root of the other 
immediate auxiliary tree. Longest preferred path auxiliary 
tree which contains a root of P will be top of the tango tree 
and will hang below with the in-order ordering. 
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Each preferred path is converted into auxiliary tree. Each auxiliary tree is 
hanged to leave of a top auxiliary tree satisfying BST property. Top 

auxiliary tree contains the root element of the reference tree P. Finally there 
n/2  auxiliary trees forms Tango tree T. 

IV. TANGO SEARCH ALGORITHM 

 After construction tango tree T0, reference trees P 
now there exists a Tango tree has the same set of data 
elements as reference tree P and each node in tango store 
depth with P. So, at any point of time we can construct 
reference tree by tango tree using the depth of the nodes 
which are part of P. 
      In this section, the behavior of a tango tree Ti, is 
going to be explained after access each xi, how the structure 
of Ti of tango BST is going to change with Pi as stated 
above. To state this algorithm, first we are going to look the 
operations which are going to support by auxiliary tree. 
The following operation should be performed by auxiliary 
tree: 

• Searching for a node with its key value. 

• Cutting an auxiliary tree in two 

• Joining two auxiliary tree into one 

All above operations should be performed O (logk) times 
where k is the no of nodes. We can claim that in red-black 
tree, we can perform SPLIT and CONCATENATE in 
O(logk) time[4,6] which are used in cutting and joining 
auxiliary tree. Auxiliary tree should maintain some addition 
information like depth, min depth, and max depth over each 
node in its subtree. Maintaining these auxiliary values 
doesn’t affect the complexity of red-black tree. 
Theorem 2: SPLIT (Ti, X): T is a red-black tree and x is a 
node in the tree, splitting the tree into two red black trees, 
where X is the root and left of X contains all nodes that are 
less than X and right of X contains all nodes greater than X. 
Theorem 3: CONCATENATE (T1; T2; X): where T1 is a 
RB Tree whose nodes have key less than X, T2 is a Red-
Black Tree whose nodes has key greater than x, merge the 
two trees in a single RB Tree, which contains all nodes in 
T1, T2 and a node with key = X. 

 
Figure 2. Red-Black Tree Split and Concatenate operations. 

 SPLIT and CONCATENATE in [1] is slightly 
differ from the standard functionality of these operations in 
terms of the number and type of input and output 
parameters. They are stated as tango-cut and tango-join 
operations The two operations describe above apply only to 
an auxiliary tree and do not cross into other auxiliary trees. 
We use the isRoot information for each node to avoid 
wandering in other trees. 

 To perform tango-cut on auxiliary tree A at depth d, 
we can cut the nodes whose Depth > d in a Red-Black Tree. 
Also, we can join two Red-Black trees into one which 
contains nodes with Depth > d, and we have also performed 
a cut to the other tree so that it’s Depth > d nodes are all lost. 
The key observation here is in Red-Black Tree of any path, 
the keys of nodes that have Depth > d forms an interval [l; r] 
(because they are the intersection of a subtree of P and the 
path). We can get the nodes l and r by using the information 
in MinDepth and MaxDepth. Then we find the predecessor l0 
of l and the successor r0 of r. All of these operations take O 
(log k) time in Red-Black Tree. To do cut, we do a SPLIT at 
l0 and then SPLIT at r0. Then we have a tree whose nodes has 
l0< key < r0 and is therefore all the nodes with Depth > d. We 
mark this tree has \hanged" and then do CONCATENATE at 
r0 and l0 respectively to finish cut operation 

 
Figure 3. Tango-cut (Split) operation over auxiliary tree with 2 split 

operations. 

 

Figure 4. Tango-cut (concatenate) operation over the auxiliary tree after 
performing split and marking root bit  with 2 concatenate operation. 

      To perform tango-join is similar to tango-cut. 
Suppose A is the tree with nodes Depth > d, B is the tree 
that do not have nodes with Depth > d. Observe that the key 
values in A must fall in between two adjacent keys l0 and r0 
in B, we can do SPLIT at these two points, and then do two 
CONCATENATE’s to join A and B. 
      To search node x, start from the root node of the 
top-auxiliary tree (root node of the reference tree P) we 
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traversal the tree in search of x, which traversals the way 
across other auxiliary trees. Say for example if we visit k 
auxiliary trees, each auxiliary tree takes O (loglogn) time to 
search. So we can say our entire search takes O (loglogn) 
time.  
      We need to update auxiliary tree whenever we 
touch the new auxiliary tree (preferred path changed in P). 
When the preferred path changed in P we need cut the path 
from any point and need to insert to another preferred path. 
Similarly we need to perform cut the auxiliary tree over any 
node, which takes 2 split operation, one marking root and 
one adding subtree operation by concatenate. And join the 
resultant auxiliary tree to new auxiliary tree. These split and 
concatenate will operate in O(loglogn) time. if k auxiliary 
trees are touched, no of changes to tango tree structure is 
O(loglogn)(k+1) times. Which infer as:  

COSTTango (K) <= O(loglogn) * IB(x) 
So we can claim it remains O(loglogn)-competitive.

V. IMPLEMENTING DYNAMIZED TANGO TREE WHICH 

MAKING DATA STRUCTRE DYNAMIC 

 Slight modifications, can Make our data structure 
performing insert and delete pertaining all of the properties 
of Tango tree, including O (log log n) -competitiveness. In 
next coming sub sections we are going to describe how to 
make dynamized tango trees but first, we are going to 
discuss  how much effort is required to perform  insertion 
and deletion in reference tree P. There will be needed to 
maintain the invariants when nodes are inserted into and 
deleted from the reference tree so that the tree is balanced 
and every internal node has exactly one preferred child. To 
meet the balance requirements, considering rotations on the 
reference tree P (after insertion and deletion), and making P 
a dynamic red-black tree. The single preferred child 
requirement by making a constant number of switches prior 
to each rotation will be met.  As the reference tree is 
implicitly maintained, so update operations over the 
reference tree must be simulated (e.g., rotations, pointer 
traversals) efficiently. In a Tango trees by simulating each of 
these operations turns out to cost O (loglogn) amortized time, 
so it is important that the corresponding reference tree will 
perform a sequence of m operations requires only O (m) 
virtual traversals and virtual rotations. (Finding the location 
of the update does not involve virtual traversals.) Red-Black 
trees require only O (1) amortized time to rebalance after an 
insert or delete [5], so we can say they meet this requirement. 

A. Competitive analysis in Dynamic search trees 

 Before going to talk about the competitiveness of 
Dynamic Tango trees, we first define what to be meant for 
dynamic BST to be competitive. Consider a Dynamic binary 
search tree A which need to execute the access sequence X 
(x1, x2 , ……. xm) such as query(xi), insert(xi), and delete(xi)  
to perform these operations cost of A is:  
 

• To execute the query (xi), it costs touching each node on 
the path from the root to desired node xi. 

• To execute the insert (xi), it must insert the node at a leaf 
and must pay for the traversal to get there. This is 
reasonable because A must search for xi to realize its 
BST does not contain xi. 

• To execute delete (xi), it must pay for accessing xi and 
for performing rotations until xi has no children (at 
which time, the node can be removed). 

 
A BST algorithm may perform any rotations it wishes 

at a cost of one per rotation during and after each operation. 
It costs simply the total number of nodes touched, plus the 
number of rotations. Without insert and delete operation, 
this definition would be identical to BST model. 

B. Dynamic InterLeave Lower Bound 

 With our new definitions, we must prove a new 
lower bound for OPT (xi). Our new lower bound is an 
extension of the one in [1], which is a variant of Wilber’s 1st 
lower bound. As in the original principle of the interleave 
bound, for each node v in the initial reference tree P0, we 
track if the last query in subtree_region (v) is in either Lv = 
left (subtree_region (v)) {v} or Rv = right (subtree_region 
(v)). Whenever the tracking for a node changes, we 
increment the dynamic interleave bound, DIB(Ti, xi), by 
one. For an insert of v, we add the cost of querying pred(v) 
followed by succ(v) (because both of these nodes must be 
touched to insert v at a leaf). For a delete of v, we add the 
cost of querying pred(v), v, and succ(v) in succession 
because all three of these nodes must be touched in order to 
remove a node in Red-black tree. Whenever we rotate a 
node v, we reset the tracking of v and its parent to Lv but 
doesn’t increase the interleave bound. Without insertions, 
deletions, and rotations, this definition would be identical to 
the original interleave bound. 

C. Algorithm for insertion and deletion over Tango tree 

 To perform insertion in tango tree we need to 
consider a few things while performing this operation as the 
structure of the virtual reference tree P should maintain 
balance with maintaining the depth of the node in tango 
based on its parent node and it should be upgraded after a 
few sets of rotations for balancing. 
The following steps will describe how the insert (xi) works 
over tango: 

1. Search (xi) in tango tree Ti, while performing search 
using tango search algorithm to update the tango tree 
structure to maintain preferred path as Pi  

2. If xi is found, insertion stops as tree contains only unique 
data sets 

3. Otherwise,  
3.1 Find predecessor and successor of parent (xi) 
3.2 Perform tango-cut over the pred(xi) and 

succ(xi). 
3.3 To the resultant tree after tango-cut insert node 

to the parent (xi) as a left / right child and mark 
the corresponding depth of the xi as depth 
(parent (xi)) +1 
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 To perform deletion in tango tree, this algorithm is 
a bit complicated when compared to insertion, while 
performing delete (xi) we need to consider several different 
cases: Node (xi) with no child, node (xi) with a single child 
and node (xi) with two children. Here we are going to 
explain the case in which node contains 2 children the other 
cases are simpler to this one. After going to perform delete 
(xi) we need to keep the modified tango tree Ti should be 
similar to virtual reference tree Pi. The following steps will 
describe how delete (xi) works over tango: 

1. Search (xi) in tango tree Ti, while performing search 
using tango search algorithm to update the tango tree 
structure to maintain preferred path as Pi  

2. If xi is not found, deletion stops as the tree contains 
doesn’t contain data set. 

3. Otherwise,  
3.1 Find predecessor and successor of xi these 

values are not the part of the auxiliary tree, 
they are found based on reference tree. 

3.2 First we swap xi and pred(xi) or succ(xi) by 
performing tango-cut and tango-join over 
pred(xi) 

3.3 The resultant will make xi a new auxiliary tree 
will only one node with no children then 
simply delete the new auxiliary tree. 

3.4 While performing this sequence of operations 
make sure it should keep updating the depth of 
the nodes in the auxiliary tree.   
 

     However our Dynamic BST model doesn’t support swap 
operations. This operation is implemented by rotating xi to 

the leaf, removing xi and rotating pred(xi) to take xi’s place. 
Because pred(xi), xi, and succ(xi) are located close together, 
O(1) rotations suffices. Then we change the field of the root 
of the Auxiliary tree to decrement the Depth and minDepth 
fields of every node in Auxiliary tree by one. These set of 
operations requiring only a constant number of field updates 
and reference pointer traversals, each costing O(log log n). 
      After the deletion, we might need to virtually 
rebalance the reference tree. In a Red-Black tree, we only 
need amortized O(1) pointer traversal and rotations for 
rebalancing. 

D. Runtime analysis of insertion and deletion 

 For insertion and deletion to perform on a 
reference tree P we may need to rebalance the tree using 
rotation which takes only O (1) amortized, so the total 
amortized cost is O (loglogn) time. 
      For each insert operation, the number of tango cut 
and join operations, which each costs O(loglogn), performed 
during each insert query which is equal to increase in the 
dynamic interleave bound. So the cost can be the total 
number of dynamic interleave bound plus cost of 
rebalancing the new auxiliary tree after inserting the node 
which is in constant time of O (1) amortized. 
      For each delete operation, this is similar to an 
insert operation with 3 more extra querying operation of the 
query (pred (xi)), query (xi), succ (xi) which each cost of O 

(loglogn) time for maintaining the tree structure balanced. 
Rebalancing the tree with xi and its pred(xi) or succ(xi) and 
same time it should balance with reference tree P. The total 
cost of these extra querying and rebalancing of Red-Black 
tree for deleted node take O (loglogn) amortized time. 
      So by this runtime analysis we can say this 
upgraded tango tree is O(loglogn)-competitive. 

VI. CONCLUSION 

      The main goal of this area of research is to extend 
the Tango tree T to allow insertion and deletion by 
satisfying its interleaving lower bound. We proved that 
insertion and deletion also apply on same bound where 
query case satisfies. Also showed that cost of rebalancing in 
Reference tree P after insertion and deletion is done in 
constant O(1) time as we use red-black tree for reference 
tree. The present results shows that upgraded tango tree 
satisfies all operation of online algorithms with total 
amortized cost of O(loglogn) time while satisfying 
O(loglogn)-competitiveness of tango tree.  
      As far as we can say based on our results this 
upgraded tango tree may be dynamically optimal? They are 
few open area of research in tango tree, weather this tree 
satisfies all necessary conditions of constant competitive 
BST? Like scanning Theorem, dynamic finger conjecture. 
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