
Upgraded Tango Tree to solve the Dictionary Problem and its Applications

V S Anirudha Kaki
Department of Computer Science and Engineering

Motilal Nehru Institute of Engineering and Technology
Allahabad, India.

e-mail: anirudhkaki@gmail.com

Suneeta Agarwal
Department of Computer Science and Engineering

Motilal Nehru Institute of Engineering and Technology
Allahabad, India.

e-mail: suneeta@mnnit.ac.in

Abstract—In 1989 Wilber [2] conjecture a lower bound O (log
n) for a query using any balanced existing binary search tree
with static data. Later in 2004 Demaine et al.., [1] Came up
with new lower bound O (loglogn) called interleave lower
bound and he also claimed that these two lower bound O (log
n) and O (loglogn) acts as a good tight intervals for any binary
search tree.

Tango tree was recently introduced by Demaine et al., [1],
having O (loglogn) - competitive ratio. Tango tree [1] supports
only lookup (search) operations, where most of the online
algorithms (like dictionary problem, a cache problem, adaptive
data compression, etc.,) need additions and removals of
collections (key, value) too, which are not supported by tango
trees [1].

In this paper, we propose a new upgraded version of tango
tree which supports addition and removal of collections (key,
value) dynamically without knowing the sequence before hand
in O (loglogn) time. We show run-time analysis with
experimental results. We also show theoretically how these
algorithms achieve O (loglogn) -competitive dynamic interleave
bound.

Keywords- Binary search tree; Red-black tree; Splay tree;

Tango tree; O(1)-competitive conjecture.

I. INTRODUCTION

 A dictionary is a basic data structure that is
capable of storing (storing objects in sorted order based on
keys as a string or integers which appears at most once,
composed of a collection of (key, value) pairs) and
retrieving information. This abstract data type is one of the
most important structures in computer sciences.
Operations associated with this data type allow:

• The addition of pairs to the collection.

• The removal of pairs from the collection.

• The modification of the values of existing pairs.

• The lookup of the value associated with a particular key.

Binary search tree (BST) provides data structures which
efficiently support all dictionary operations, with flexibility
and adaptability to a large number of purposes.

In the last decade many different BST data
structures have been developed which perform these data
type dictionary operations (associative array, map, etc.) In Ω
(log n) time, where n is no of elements in the tree. For a
specific access sequence (x1, x2 ……. xm) there can be any
BST algorithm which required a total running time of O
(mlogn). This disparity however does not rule out the
possibility of having an instance optimal BST, through

competitive analysis: for any access sequence (x), let OPT
(X) denotes the minimal cost for executing the access
sequence X by any BST algorithm to serve it. A given BST
algorithm A has a competitive ration of α for all sequences
of operations X, we have COSTA <= αCOSTOPT (X).

In 1985, Sleater and Tarjan [3] developed a BST
called splay tree, as “Best BST” which they conjecture to be
O (1) -competitive. However, they are later known to be O
(log n) competitive ratio. So, this led researcher’s looking at
the efficiency of BST’s on different input sequence has
grown out of this conjecture and to search for a BST which
is optimal (or close to optimal) on any sequence of the
search which has grown out of this conjecture. Given splay
trees have a number of remarkable properties like ,
including the Balance Theorem [3], the Static Optimality
Theorem [3], the Static Finger Theorem [3], The Working
Set Theorem [3], the Scanning Theorem [5], the Sequential
Access Theorem [5, 7], and the Dynamic Finger Theorem
[10, 11]. They are a natural candidate for the dynamic
optimality. The Dynamic Optimality Conjecture [3] states
that for any sequence of accesses, the cost of splay trees on
that sequence of accesses is within a constant factor of any
other binary search tree algorithm for processing that
sequence of accesses. That is, it states that splay trees are O
(log n) competitive [3] for some constant. However, over
decades of research, still the conjecture is open for research.

After several attempts solve it for about 20 years,
this situation was recently improved by Demaine et al., [1]
Developed an O (loglogn) -competitive BST structure,
called tango tree, suggested searching for alternative binary
search tree algorithm which has a small, but non constant
competitive factor, they proposed tango. This was the first
major improvement in O (loglogn) competitive ratio over
previous (trivial) competitive ratio of O (logn) upper bound,
after Slater and Tarjan [3] progress on dynamic optimality.
 In the journal version of seminal papers on tango
trees Demaine et al., [1] stated tango as a static tree with
dynamic search which doesn’t support insertion and
deletion. In this paper we came up with the upgraded
version of tango as dynamic tango tree which support both
insertion and deletion in O (loglogn) time.
 The rest of the paper is organized as follows: In
section II, we discuss BST model and stated its lower bound
on OPT (X) developed for competitive ratio. In section III,
we defined the data structure of the tango tree. In section IV,
we discuss that tango algorithm. In section V, we upgrade

Proc. of the Second International Conference on Advances in Computing, Control and Communication (CCN)
Editor In Chief Dr. R. K. Singh.
Copyright © 2012 Universal Association of Computer and Electronics Engineers. All rights reserved.
ISBN: 978-981-07-2579-2 doi:10.3850/978-981-07-2579-2 CCN-445

39

Proc. of the Second International Conference on Advances in Computing, Control and Communication (CCN)

tango tree called the dynamic tango tree which support both
insertion and deletion over the same tango tree.

II. BST MODEL

In this paper, we used the BST model which was
defined by Wilber [2]. Every node keeps a key from a
totally ordered universe which obeys in-order at any node.
Basically an online BST data structure argument each node
in a BST with additional data. Each unit cost operation
changes the pointer referentially of the node to that new
node pointer. The access algorithm’s choice of the next
operation to perform is a function of the data and augmented
data stored in the node currently pointed to. In general the
behavior of the algorithm depends on the past. The amount
of argument information should be as small as possible. For
example, red-black trees use one bit [4] and splay tree do
not use any [3].

A. Optimality

Consider any BST data structure that executes any
particular access sequence X optimally [9]. Let the cost per
operation made by fastest BST data Structure for X is
denoted as OPT (X). In other words any fastest offline BST
algorithm can execute X in OPT (X), as the model doesn’t
restrict its next move from a BST access algorithm because
it depends on the future access to come. Standard balanced
BST establishes that OPT (X) = O (mlogn). In some closer
of access sequence X (x1, x2 ……. xm) Wilber [2] proved OPT
(X) = Ω (mlogn).

A BST data structure is said to be dynamically
optimal, only by the execution of all the sequences of X in
time O (OPT (X)). Apart from this, it is still a query that
such a data structure exists. BST data Structure is c-
competitive if it executes all sequence X in time at most
cOPT(X). Finally this model has O (log log n) augmented
bits.

The main objective of the line of research is to
design a dynamically optimal O(1)-competitive) online BST
data structure that uses O(1) augmented bits per node. The
result would be a single, asymptotically best BST data
structure.

B. Interleave Lower Bound

 Given any BST data structure (To) and a m-element
access sequence X (x1, x2 ……. xm), time taken by To to
execute X, depends only on X. This lower bound is said to
be interleaved lower bound. Interleave lower bound is a
slight variation of Wilber [2] first bound OPT (To, X). This
lower bound is also similar to lower bound that follows
from partial sums in the semi group model [8, 10].
 Let’s consider a perfect binary tree P on the keys
{1, 2, 3 ….. n} for accessing the sequence X, we denoted
interleave lower bound as IB(P,X). For each node y in P,
left region of y is defined as y plus all nodes of the y’s left
subtree in P and similarly right region of y is defined as all
nodes of the y’s right subtree in P. Next, label each access in

the restricted sequence X over P. We label each access
sequence xi as left/right based on its region over y,
discarding all the access outside y’s in P. Amount of
interleave IB(P,X,V) is no of the times the label switches
between left and right. Interleave bound IB (X) is the sum of
these interleave amounts over all node y in P.
Theorem 1: IB (X) /2-and are a lower bound on OPT (X).
The cost of the optimal offline BST that serves access
sequence X.

OPT(To,X) >= IB(P,X)/2-O(n) + m

III. THE TANGO TREE DATA STRUCTURE

 Consider a static balanced BST of height O (logn)
which is made on a set of n nodes, refer this tree as
reference tree P. The depth of any node in P is atmost
2log(n+1) as we consider P as balanced tree. At any point of
time each node in P has a preferred child may be its left
child or right child. In other words we can state that
preferred child of node y in P would be left node or right
node based on the last access to a node within y’s subtree in
P was in left region of y (including y) or right region of y
respectively. After executing the access sequence X (x1, x2

……. xm), the state of P is changed to Pm over augmented
perfect binary search tree. The structure of the reference tree
P is static (we are going to modify it to support insertion and
deletion in next section) only preferred child changed over
time.

Figure 1. Balanced red-black with preferred paths using link-

cut algorithm, total n/2 preferred paths.

 We form a preferred path by joining all the
preferred child chain from the root to its preferred child and
to its preferred child and so on, until we reach a node which
doesn’t have a preferred child. Preferred path will contain at
most O (logn) preferred child’s which is height of P. We
remove preferred from P, which makes the P into pieces of
set of preferred paths. We generate a new balanced BST
using these preferred paths which are called as Auxiliary
tree has atmost (logn) nodes with height O(loglogn). Each
node in Auxiliary tree we maintain its depth in P (used to
maintain symmetric between reference tree and tango tree),
min and max depth of the subtree over the nodes in auxiliary
tree and isRoot bit that indicates its child is apart from the
other auxiliary tree. We maintain the auxiliary tree as red-
black tree which has a constant factor overhead [4]. The
leaves of the auxiliary tree link to the root of the other
immediate auxiliary tree. Longest preferred path auxiliary
tree which contains a root of P will be top of the tango tree
and will hang below with the in-order ordering.

40

Proc. of the Second International Conference on Advances in Computing, Control and Communication (CCN)

Each preferred path is converted into auxiliary tree. Each auxiliary tree is
hanged to leave of a top auxiliary tree satisfying BST property. Top

auxiliary tree contains the root element of the reference tree P. Finally there
n/2 auxiliary trees forms Tango tree T.

IV. TANGO SEARCH ALGORITHM

 After construction tango tree T0, reference trees P
now there exists a Tango tree has the same set of data
elements as reference tree P and each node in tango store
depth with P. So, at any point of time we can construct
reference tree by tango tree using the depth of the nodes
which are part of P.
 In this section, the behavior of a tango tree Ti, is
going to be explained after access each xi, how the structure
of Ti of tango BST is going to change with Pi as stated
above. To state this algorithm, first we are going to look the
operations which are going to support by auxiliary tree.
The following operation should be performed by auxiliary
tree:

• Searching for a node with its key value.

• Cutting an auxiliary tree in two

• Joining two auxiliary tree into one

All above operations should be performed O (logk) times
where k is the no of nodes. We can claim that in red-black
tree, we can perform SPLIT and CONCATENATE in
O(logk) time[4,6] which are used in cutting and joining
auxiliary tree. Auxiliary tree should maintain some addition
information like depth, min depth, and max depth over each
node in its subtree. Maintaining these auxiliary values
doesn’t affect the complexity of red-black tree.
Theorem 2: SPLIT (Ti, X): T is a red-black tree and x is a
node in the tree, splitting the tree into two red black trees,
where X is the root and left of X contains all nodes that are
less than X and right of X contains all nodes greater than X.
Theorem 3: CONCATENATE (T1; T2; X): where T1 is a
RB Tree whose nodes have key less than X, T2 is a Red-
Black Tree whose nodes has key greater than x, merge the
two trees in a single RB Tree, which contains all nodes in
T1, T2 and a node with key = X.

Figure 2. Red-Black Tree Split and Concatenate operations.

 SPLIT and CONCATENATE in [1] is slightly
differ from the standard functionality of these operations in
terms of the number and type of input and output
parameters. They are stated as tango-cut and tango-join
operations The two operations describe above apply only to
an auxiliary tree and do not cross into other auxiliary trees.
We use the isRoot information for each node to avoid
wandering in other trees.

 To perform tango-cut on auxiliary tree A at depth d,
we can cut the nodes whose Depth > d in a Red-Black Tree.
Also, we can join two Red-Black trees into one which
contains nodes with Depth > d, and we have also performed
a cut to the other tree so that it’s Depth > d nodes are all lost.
The key observation here is in Red-Black Tree of any path,
the keys of nodes that have Depth > d forms an interval [l; r]
(because they are the intersection of a subtree of P and the
path). We can get the nodes l and r by using the information
in MinDepth and MaxDepth. Then we find the predecessor l0
of l and the successor r0 of r. All of these operations take O
(log k) time in Red-Black Tree. To do cut, we do a SPLIT at
l0 and then SPLIT at r0. Then we have a tree whose nodes has
l0< key < r0 and is therefore all the nodes with Depth > d. We
mark this tree has \hanged" and then do CONCATENATE at
r0 and l0 respectively to finish cut operation

Figure 3. Tango-cut (Split) operation over auxiliary tree with 2 split

operations.

Figure 4. Tango-cut (concatenate) operation over the auxiliary tree after
performing split and marking root bit with 2 concatenate operation.

 To perform tango-join is similar to tango-cut.
Suppose A is the tree with nodes Depth > d, B is the tree
that do not have nodes with Depth > d. Observe that the key
values in A must fall in between two adjacent keys l0 and r0
in B, we can do SPLIT at these two points, and then do two
CONCATENATE’s to join A and B.
 To search node x, start from the root node of the
top-auxiliary tree (root node of the reference tree P) we

41

Proc. of the Second International Conference on Advances in Computing, Control and Communication (CCN)

traversal the tree in search of x, which traversals the way
across other auxiliary trees. Say for example if we visit k
auxiliary trees, each auxiliary tree takes O (loglogn) time to
search. So we can say our entire search takes O (loglogn)
time.
 We need to update auxiliary tree whenever we
touch the new auxiliary tree (preferred path changed in P).
When the preferred path changed in P we need cut the path
from any point and need to insert to another preferred path.
Similarly we need to perform cut the auxiliary tree over any
node, which takes 2 split operation, one marking root and
one adding subtree operation by concatenate. And join the
resultant auxiliary tree to new auxiliary tree. These split and
concatenate will operate in O(loglogn) time. if k auxiliary
trees are touched, no of changes to tango tree structure is
O(loglogn)(k+1) times. Which infer as:

COSTTango (K) <= O(loglogn) * IB(x)
So we can claim it remains O(loglogn)-competitive.

V. IMPLEMENTING DYNAMIZED TANGO TREE WHICH

MAKING DATA STRUCTRE DYNAMIC

 Slight modifications, can Make our data structure
performing insert and delete pertaining all of the properties
of Tango tree, including O (log log n) -competitiveness. In
next coming sub sections we are going to describe how to
make dynamized tango trees but first, we are going to
discuss how much effort is required to perform insertion
and deletion in reference tree P. There will be needed to
maintain the invariants when nodes are inserted into and
deleted from the reference tree so that the tree is balanced
and every internal node has exactly one preferred child. To
meet the balance requirements, considering rotations on the
reference tree P (after insertion and deletion), and making P
a dynamic red-black tree. The single preferred child
requirement by making a constant number of switches prior
to each rotation will be met. As the reference tree is
implicitly maintained, so update operations over the
reference tree must be simulated (e.g., rotations, pointer
traversals) efficiently. In a Tango trees by simulating each of
these operations turns out to cost O (loglogn) amortized time,
so it is important that the corresponding reference tree will
perform a sequence of m operations requires only O (m)
virtual traversals and virtual rotations. (Finding the location
of the update does not involve virtual traversals.) Red-Black
trees require only O (1) amortized time to rebalance after an
insert or delete [5], so we can say they meet this requirement.

A. Competitive analysis in Dynamic search trees

 Before going to talk about the competitiveness of
Dynamic Tango trees, we first define what to be meant for
dynamic BST to be competitive. Consider a Dynamic binary
search tree A which need to execute the access sequence X
(x1, x2 , ……. xm) such as query(xi), insert(xi), and delete(xi)
to perform these operations cost of A is:

• To execute the query (xi), it costs touching each node on
the path from the root to desired node xi.

• To execute the insert (xi), it must insert the node at a leaf
and must pay for the traversal to get there. This is
reasonable because A must search for xi to realize its
BST does not contain xi.

• To execute delete (xi), it must pay for accessing xi and
for performing rotations until xi has no children (at
which time, the node can be removed).

A BST algorithm may perform any rotations it wishes

at a cost of one per rotation during and after each operation.
It costs simply the total number of nodes touched, plus the
number of rotations. Without insert and delete operation,
this definition would be identical to BST model.

B. Dynamic InterLeave Lower Bound

 With our new definitions, we must prove a new
lower bound for OPT (xi). Our new lower bound is an
extension of the one in [1], which is a variant of Wilber’s 1st
lower bound. As in the original principle of the interleave
bound, for each node v in the initial reference tree P0, we
track if the last query in subtree_region (v) is in either Lv =
left (subtree_region (v)) {v} or Rv = right (subtree_region
(v)). Whenever the tracking for a node changes, we
increment the dynamic interleave bound, DIB(Ti, xi), by
one. For an insert of v, we add the cost of querying pred(v)
followed by succ(v) (because both of these nodes must be
touched to insert v at a leaf). For a delete of v, we add the
cost of querying pred(v), v, and succ(v) in succession
because all three of these nodes must be touched in order to
remove a node in Red-black tree. Whenever we rotate a
node v, we reset the tracking of v and its parent to Lv but
doesn’t increase the interleave bound. Without insertions,
deletions, and rotations, this definition would be identical to
the original interleave bound.

C. Algorithm for insertion and deletion over Tango tree

 To perform insertion in tango tree we need to
consider a few things while performing this operation as the
structure of the virtual reference tree P should maintain
balance with maintaining the depth of the node in tango
based on its parent node and it should be upgraded after a
few sets of rotations for balancing.
The following steps will describe how the insert (xi) works
over tango:

1. Search (xi) in tango tree Ti, while performing search
using tango search algorithm to update the tango tree
structure to maintain preferred path as Pi

2. If xi is found, insertion stops as tree contains only unique
data sets

3. Otherwise,
3.1 Find predecessor and successor of parent (xi)
3.2 Perform tango-cut over the pred(xi) and

succ(xi).
3.3 To the resultant tree after tango-cut insert node

to the parent (xi) as a left / right child and mark
the corresponding depth of the xi as depth
(parent (xi)) +1

42

Proc. of the Second International Conference on Advances in Computing, Control and Communication (CCN)

 To perform deletion in tango tree, this algorithm is
a bit complicated when compared to insertion, while
performing delete (xi) we need to consider several different
cases: Node (xi) with no child, node (xi) with a single child
and node (xi) with two children. Here we are going to
explain the case in which node contains 2 children the other
cases are simpler to this one. After going to perform delete
(xi) we need to keep the modified tango tree Ti should be
similar to virtual reference tree Pi. The following steps will
describe how delete (xi) works over tango:

1. Search (xi) in tango tree Ti, while performing search
using tango search algorithm to update the tango tree
structure to maintain preferred path as Pi

2. If xi is not found, deletion stops as the tree contains
doesn’t contain data set.

3. Otherwise,
3.1 Find predecessor and successor of xi these

values are not the part of the auxiliary tree,
they are found based on reference tree.

3.2 First we swap xi and pred(xi) or succ(xi) by
performing tango-cut and tango-join over
pred(xi)

3.3 The resultant will make xi a new auxiliary tree
will only one node with no children then
simply delete the new auxiliary tree.

3.4 While performing this sequence of operations
make sure it should keep updating the depth of
the nodes in the auxiliary tree.

 However our Dynamic BST model doesn’t support swap
operations. This operation is implemented by rotating xi to

the leaf, removing xi and rotating pred(xi) to take xi’s place.
Because pred(xi), xi, and succ(xi) are located close together,
O(1) rotations suffices. Then we change the field of the root
of the Auxiliary tree to decrement the Depth and minDepth
fields of every node in Auxiliary tree by one. These set of
operations requiring only a constant number of field updates
and reference pointer traversals, each costing O(log log n).
 After the deletion, we might need to virtually
rebalance the reference tree. In a Red-Black tree, we only
need amortized O(1) pointer traversal and rotations for
rebalancing.

D. Runtime analysis of insertion and deletion

 For insertion and deletion to perform on a
reference tree P we may need to rebalance the tree using
rotation which takes only O (1) amortized, so the total
amortized cost is O (loglogn) time.
 For each insert operation, the number of tango cut
and join operations, which each costs O(loglogn), performed
during each insert query which is equal to increase in the
dynamic interleave bound. So the cost can be the total
number of dynamic interleave bound plus cost of
rebalancing the new auxiliary tree after inserting the node
which is in constant time of O (1) amortized.
 For each delete operation, this is similar to an
insert operation with 3 more extra querying operation of the
query (pred (xi)), query (xi), succ (xi) which each cost of O

(loglogn) time for maintaining the tree structure balanced.
Rebalancing the tree with xi and its pred(xi) or succ(xi) and
same time it should balance with reference tree P. The total
cost of these extra querying and rebalancing of Red-Black
tree for deleted node take O (loglogn) amortized time.
 So by this runtime analysis we can say this
upgraded tango tree is O(loglogn)-competitive.

VI. CONCLUSION

 The main goal of this area of research is to extend
the Tango tree T to allow insertion and deletion by
satisfying its interleaving lower bound. We proved that
insertion and deletion also apply on same bound where
query case satisfies. Also showed that cost of rebalancing in
Reference tree P after insertion and deletion is done in
constant O(1) time as we use red-black tree for reference
tree. The present results shows that upgraded tango tree
satisfies all operation of online algorithms with total
amortized cost of O(loglogn) time while satisfying
O(loglogn)-competitiveness of tango tree.
 As far as we can say based on our results this
upgraded tango tree may be dynamically optimal? They are
few open area of research in tango tree, weather this tree
satisfies all necessary conditions of constant competitive
BST? Like scanning Theorem, dynamic finger conjecture.

REFERENCES
[1] Erik D. Demaine, Dion Harmon, John Iacono, and Mihai P˘ atra¸ scu.

“Dynamic Optimality–Almost”. FOCS, 2004. Proceedings of the 45th
Annual IEEE Symposium on Foundations of Computer Science
(FOCS’04), pages 484–490. IEEE Computer Society, 2004.

[2] Robert Wilber. “Lower bounds for accessing binary search trees with
rotations”. SIAM Journal on Computing, 18(1):56–67, 1989.

[3] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting
binary search trees. Journal of the ACM, 32(3):652–686, July 1985.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Cli ord Stein. “Introduction to Algorithms”. MIT Press, second
edition, 2001.

[5] R. E. Tarjan. “Sequential access in splay trees takes linear time”.
Combinatorica, 5(4):367–378, September 1985.

[6] R. Wein. “E cient implementation of red-black trees with split and
catenate operations”. Technical report, Tel-Aviv University, 2005.

[7] Amr Elmasry. “On the sequential access theorem and deque
conjecture for splay trees”. Theoretical Computer Science, 314:459–
466, 2004.

[8] Haripriyan Hampapuram and Michael L. Fredman. “Optimal
biweighted binary trees and the complexity of maintaining partial
sums”. SIAM Journal on Computing, 28(1):1–9, 1998.

[9] Donald E. Knuth. “Optimum binary search trees”. Acta Informatica,
1:14–25, 1971.

[10] Richard Cole, Bud Mishra, Jeanette Schmidt, and Alan Siegel. “On
the dynamic finger conjecture for splay trees”. Part I: Splay Sorting
log n-Block Sequences. Siam J. Comput., 30:1–43, 2000.

[11] Richard Cole. “On the dynamic finger conjecture for splay trees”. Part
II: The Proof. Siam J. comput., 30:44–85, 2000.

43

