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Abstract—This paper presents study on improving the theory of 

plate bending. In doing this, it was assumed that none of the 

components of stress tensor and strain tensor shall be neglected. 

This assumption presupposes that all the components of stress 

tensor and strain tensor are significant. Constitutive equations 

were determined. Equilibrium equations of a static body at state 

of stress was used in conjunction with equations of strain-

displacement and constitutive equations to determine the 

improved governing equation and stress resultants. A numerical 

problem was solved for a square plate simply supported at all the 

four edges. Obtained result indicated that maximum deflection 

and bending moment are -0.003377qa4/D and -0.0397125qa2 

respectively. The corresponding values from classical theory are  

0.00414qa4/D and  0.05163qa2 respectively. It was observed that 

the maximum deflection and bending moment from classical 

theory were higher than the magnitude of those from the present 

study by 18% and 23% respectively. It was also observed that the 

values from the present study are negative while those from the 

classical theory are positive. 
Keywords—Plate bending, stress tensor, strain tensor, 

constitutive equation, equilibrium equation, governing equation, 

stress resultants, deflection, bending moment  

I.  Introduction  
Some of Kirchhoff’s or classical plate theory assumptions [1, 

2, 3] are: 

i. Vertical shear strains γxz and γyz and normal vertical 

strain εz are negligible and should be omitted from 

the strain tensor.  

ii. Normal vertical stress σz is negligible and should be 

omitted from the stress tensor.  

These assumptions, no doubt simplified the bending theory of 

plates but seriously over estimates the bending stresses. This 

drawback attracted the attention of earlier Scholars [4, 5, 6, 7] 

who tried to refine the plate bending theory. However, their 

works presented complex and complicated governing 

equations and equations of stress resultants. These refined 

theories of plate bending have received little patronage as 

most recent works on plates had depended on the classical 

plate theories. Under this scenario, one wonders whether, the 

plate theory can be improved without arriving at complexities. 

Thus, the main objective of this study is to develop an 

improved theory of plate bending by dropping the 

controversial assumptions. In doing this the following 

assumptions shall be adopted: 

i. The plate is isotropic, homogeneous and initially flat. 

ii. A straight line normal to the middle surface of the 

plate remains straight and normal to middle surface 

after bending. 

iii. For thin plate, normal vertical strain εz is constant. 

That is derivatives of normal vertical strain εz are 

zero. For thick plate, normal vertical strain εz varies 

along the depth of the plate. 

Strain tensors 

The displacements along x, y and z axes are denoted as u, v 

and w respectively. Of common knowledge are following 

components strain tensors. 

II. Strain tensors  
The displacements along x, y and z axes are denoted 

as u, v and w respectively. Of common knowledge 

are following components strain tensors. 
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III. Basic constitutive equations 
The six basic constitutive equations are stated: 
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Rearranging equation (9) gives: 
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Substituting equation (13) into equations (7) and (8) gives: 
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Solving equations (14) and (15) simultaneously gives: 
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IV. Equations of equilibrium 
The three body forces of finite element acting along x, y and z 

axes are denoted as FX, Fy and Fz.  

For an element in a state of stress, the three basic equations of 

static equilibrium are of common knowledge and they are: 
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V. Improved theory equations 
For a plate subject to uniformly distributed load normal to the 

middle surface of the plate, Fx = Fy  = 0. With this 

assumption, equations (18) and (19), upon rearrangement and 

integration become: 
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Substituting, equations (13), (21) and (22) into equation (20) 

gives: 
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From equation (5) we obtain: 
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Integrating equation (24) gives: 
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Similarly, from equation (6) we obtain: 
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Differentiating equation (25) gives: 
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Similarly, differentiating equation (26) gives: 
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Substituting equations (3), (27) and (29) into equations (16) 

and (17) gives: 
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Substituting equation (30) into equations (10) gives: 
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Substituting equations (31), (32) and (33) into equations (23) 

gives: 
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Adding like terms together gives: 
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But the uniform distributed load, q normal to the middle 

surface of the plate is given as: 

  ∫   
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Substituting equation (34) into equation (35) gives: 
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Simplifying equation (36) give: 
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The plate flexural rigidity denoted as D is given as: 
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Substituting equation (38) into equation (37) gives: 

 

     [
   

   
  

   

      
 
   

   
 
  

  
 
   

   
 ]  (  ) 

        
(   ) 

(    )
 

Equation (39) is the governing equation of a thick plate. For 

thin plate, the last term in equation (39) becomes zero and the 

governing equation becomes: 
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Stress resultants are given as: 
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Substituting equation (31) into equation (41) gives: 
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Substituting equation (32) into equation (42) gives: 
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Substituting equation (33) into equation (43) gives: 
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Substituting equation (21), (31) and (33) into equation (44) 

gives: 
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Substituting equation (22), (32) and (33) into equation (45) 

gives: 
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VI. Numerical problem 
Let’s determine the maximum deflection and bending moment 

of a square plate simply supported at all the four edges (ssss) 

using this improved theory and assume the Poisson’s ratio is 

0.30. The deflection equation of ssss plate was given [8] as: w 

= A(R − 2R
3
 + R

4
) (Q − 2Q

3
 + Q

4
) 

 

VII. Results 
The values of maximum deflection and bending moment from 

the present study and classical theory are presented on table I. 

 

TABLE I.  VALUES OF MAXIMUM DEFLECTION AND BENDING MOMENT 

 Maximum deflection Maximum moment 

Improved 

theory           
  

 
               

Classical 

theory         
  

 
 

           
 

Percentage 

difference 
18.43% 23% 

 

Looking at table I, one will see that the classical theory of 

plate bending overestimated the deflection and bending 

moment by 18.43% and 23% respectively. These values of 

percentage difference are quite large to be overlooked. With 

this, one can make good saving of engineering materials 

during design, construction and fabrication. An observation 

here is that where as the data from the present study are 

negative, those from classical theory are positive. This stems 

from the assumption that the vertical shear strains γxz and γyz 

are not zero. The classical theory assumed them to be zero. 

Thus, it is recommended that this outcome of this present 

study be adopted for analysis of plates. It is simply like the 

classical theory. Unlike the refined theories, it did not present 

any complexity. 
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