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Abstract— Our life is filled by various modern electronic 

products. Semiconductor memories are essential parts of these 

products and have been growing in performance and density in 

accordance with Moore’s law like all silicon technology. The 

process technology has been scaling down from last two decades 

and to get the functional and high yielding design beyond 100-nm 

feature sizes the existing design approach needs to be modified to 

deal with the increased process variation interconnects 

processing difficulties, and other newly physical effects. 

Considerable increase in gate direct tunneling current in the 

nano-CMOS regime is because of scaling of gate oxide. 

Subthreshold leakage and gate direct tunneling current are no 

longer second-order effects. The effect of gate-induced drain 

leakage (GIDL) is easily visible designs, such as DRAM and low-

power SRAM. All these effects cannot be ignored as it will lead to 

nonfunctional SRAM, DRAM, or any other circuit. Reducing the 

supply voltage which is now not a feasible solution in respect to 

stability of the SRAMs and on reducing the supply voltage the 

stability also disturbs. Power management is also a challenge in 

mobile applications. In this paper we have used leakage reduction 

technique to reduce the leakage power which reduces the leakage 

power from 40% to 50% for the SRAM cell at 45nm technology. 

Keywords—Tunneling current, GIDL, Feature Size, Process 

Variation

I. Introduction
The four major challenges for having low voltage leakage : 
reducing the leakage current, maintaining the signal voltage 
and signal charge of RAM cells, reducing the speed variations 
caused by variations in MOSFET threshold voltage , and 
reducing the cell size. Of these, the leakage current issue is 
especially important because leakage loses the low-power 
advantages of CMOS circuits that we take for granted today. 
There are two major types of leakage. The first is sub-
threshold current and the second is gate-tunneling current in 
MOSFETs, both of which increase rapidly when Threshold 
voltage  and the gate oxide thickness are reduced. Both types 
greatly affect the operation of RAM cells and peripheral 
circuits, not only in the standby mode but also in the active. As 
reducing sub-threshold current depends on circuit parameters  
while reducing gate tunneling current depends on process and 
device parameters. As the process technology continues to 

scale deeper into the nanometer region, the stability of 

embedded SRAM cells is a growing concern. The supply 

voltage must scale down accordingly to control the power 

consumption and maintain the device reliability. Scaling the 

supply voltage and minimum transistor dimensions that are 

used in SRAM cells challenge the process and design 

engineers to achieve reliable data storage in SRAM arrays. 
In [4] the proposed 9T SRAM cell which has better 

stability. Stacking of PMOS has been used in this cell. The 
SRAM been simulated at 45nm 65% increase in SVNM 
compared to 6T SRAM cell. The cell has 33% leakage power 
reduction also with respect to 6T SRAM cell. So to reduce the 
further leakage power we used super cut off scheme which can 
further reduce the leakage power by 40%. 

II. Working of SRAM Cell
In this section, cell is shown in Fig.1, as it is mentioned in 

[4], it is composed of two cross coupled P-P-N inverters, and 

data is stored in node Q and node Qb in a complementary 

manner. Transistors P1, P3, and N1 form a P-P-N inverter and 

P0, P2, N0 form another. 

The source terminal of this transistor is connected to the RWL, 

which connects to the ground voltage only during the read 

operation. Otherwise, it stays high to control unnecessary 

leakage current.V1 and V2 are located between the two 

cascaded P-MOS transistors forming the P-P-N inverter. Q 

and Qb are the storage nodes. BL and BLB are bitlines while 

WL is the word line as in conventional 6T SRAM cell. 

A. Write Operation
To perform a write operation, the wordline WL is enabled and 

one bitline, e.g., BLB, is pulled down to ground in advance. 

When the supply voltage is relatively high (e.g., 1 V), node Qb 

(storing ’1’) here in this case will be pulled down directly 

through the discharging path formed by. In turn, node Q will 

be charged up to complete the data-flipping process. 

In general, the lower portion of our P-P-N inverter pair can be 

viewed as a latch consisting of P3-N1and P2-N0. In some 

sense, this latch takes node V1and node V2 as the pseudo 

supply terminals.  
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table II we can see that if we increases the Vgs beyong -50mv 

it will increase the leakage power drastically. 

Table II. Leakage power using reduction technique 

In table III, the leakage power of PPN cell at various voltages 

without super cutoff is also been calculated and it can be 

clearly seen that Vgs 0V the leakage power is almost 50% to 

that of without using the leakage reduction technique. At 1 V 

without leakage reduction technique the power is again almost 

50% of that using with reduction technique so we can say that 

the power is reduced by 50%, if we increases the Vgs beyond -

50 mV it will increase leakage power. 

Table III. Leakage power without reduction technique 

CONCLUSION: 

    The cell has 33% leakage power reduction also with respect 

to 6T SRAM cell and in this we have not used any leakage 

reduction techniques. The static noise margin of the 9T SRAM 

cell in [5] was 300mv for 1.0V at 65nm and at 32 nm it was 

reported as 367mV at 0.9Vin [6] but for this it is 374mv at 

1.0V in TT corner. The leakage current of the cell as in 

without using any leakage reduction technique was 75.8pw but 

after using super cut off scheme it has been drastically reduced 

to 14.65pw.So the cell is good choice for low power 

applications as well as where stability is a major concern. 
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