
Proc. Of the 2nd International E-Conference on Advances in Engineering, Technology and Management - ICETM 2020
 Copyright © Institute of Research Engineers and Doctors. All rights reserved.
 ISBN: 978-1-63248-189-4 DOI: 10.15224/978-1-63248-189-4-10

50

A Simple Sequential Data Protocol for IoT

Applications

Đorđe Herceg, Ivan Petković, Dejana Herceg

Abstract— We present a simple sequential data protocol

(SSDP) - an implementation of a lightweight message encoding
and exchange protocol for Arduino-based sensor devices. The
protocol supports simple data types, strings and binary arrays
with low overhead. It defines several types of messages used to
discover device metadata, send and receive sensor reading values
and runtime parameter values, as well as alarms. The SSDP
Arduino library is simple and has a low memory footprint. In
conjunction with mesh networking, SSDP can be used to quickly
and efficiently build sensor networks based on inexpensive
Arduino hardware.

Keywords—sensor networks, Arduino, microcontroller,
protocol, message exchange, IoT

I. Introduction
IoT applications and sensor network applications are the

foundation of todays connected world. There exist a multitude
of different microcontroller platforms and application
frameworks together with many communication devices,
standards, and protocols. The Arduino [5] family of single-
board devices, originally intended as a learning platform, has
outgrown its purpose and thanks to its affordability, simplicity
of designing and programming, is today used to build IoT
devices and sensor devices. There is ample offering of sensors,
actuators, displays, memory, and communications devices
which can be connected to the Arduino. The Arduino software
is simple to use and it can be extended with numerous third-
party libraries, ranging from low-level device drivers to RTOS
to complete data-logging and IoT solutions. Internet
connectivity can be achieved using technologies such as WiFi,
LoRa and GSM.

A prototype Arduino-based sensor device is shown in
Figure 1. It is built around the Arduino Nano board, together
with a real-time clock module and a 2.4GHz, 2Mbit/second
digital transceiver module NRF24L01. Sensors are connected
to the two terminal brackets on top of the PCB. The Arduino
Nano board has the 8-bit Atmel ATmega328 CPU at 16MHz,
with 32Kb program flash memory, 2Kb RAM, 1Kb EEPROM,
22 digital I/O pins and 8 analog input pins. Actuators such as
relays, motor drivers, valves etc. can also be connected.

This paper presents Simple Sequential Data Protocol -
SSDP - an implementation of a lightweight message encoding
and manipulation protocol for Arduino-based sensor devices.
The main goal behind SSDP was to provide an encoding
scheme for transfer of binary data between devices, together
with a software component which would maintain device state
in a consistent manner. The SSDP software maintains a

storage for sensor readings and configuration parameters on
the device, as well as a set of commands which enable remote
assignment and querying of the device‟s state. During the
initialization phase of the firmware, the developer uses
metadata to specify a set of variables which comprise the
device‟s state (sensor readings and runtime parameters). Based
upon the metadata, the library takes care of maintaining the
values, interpreting incoming commands, generating response
messages, and raising data change notifications. The SSDP
library consumes about 5Kb of program space and less than
500 bytes of RAM when compiled.

Figure 1. A prototype sensor device with a RF transciever

The motivation for this work stems from a specific need
pertinent to deployment of a large number of sensor devices at
one location. The devices need to be able to connect to the
Internet in order to report sensor readings and alarms, and also
perform certain actions when commanded by the server. It is
common practice in such cases to set up a hub device
surrounded by many sensor devices and connect them in a
self-configuring wireless mesh network. There are many
examples of successfully employed mesh networks, one
example being honeybee farming. Honeybee hives are usually
kept in remote locations, without access to electrical grid and
possibly with weak Internet access. Hives are placed on
electronic scales and equipped with thermometers, humidity
meters and accelerometers to provide real-time monitoring and
tampering detection. Simple Arduino devices with mesh
networking capability, running on batteries, are used to
monitor each individual hive. The hub device is equipped with
a GSM modem, placed in a position which offers the best
Internet access and access to the mesh network. Its task is to
relay data between sensor devices and the backend located in
the cloud, using industry-standard communications
infrastructure, such as MQTT, HTTPS etc.

https://icetm.theired.org/

Proc. Of the 2nd International E-Conference on Advances in Engineering, Technology and Management - ICETM 2020
 Copyright © Institute of Research Engineers and Doctors. All rights reserved.
 ISBN: 978-1-63248-189-4 DOI: 10.15224/978-1-63248-189-4-10

51

Figure 2. Network topology based on SSDP-enabled sensor devices

We based our solution on the inexpensive Arduino Nano
hardware. Thanks to the low-power capabilities of the Atmel
CPUs, a battery-powered Arduino can run for a week and up
to several months. Mesh network was built upon the Nordic
Semiconductor NRF24L01 digital transceiver, which enables
digital communication in the 2.4GHz band via short
unencrypted messages up to 32 bytes in length, at the speeds
from 250Kbit/s up to 2Mbit/s. This module was chosen
because it offers low power consumption, nearly instantaneous
startup times and there exist a reliable mesh networking
library for it [8].

Based on the chosen hardware we had to decide which
communication protocol to use between the sensor devices.
The limited amount of RAM on the Arduino (2KB) ruled out
high level formats such as XML and JSON. Other protocols,
such as MQTT and Protocol Buffers were more adequate, but
due to specific requirements and hardware constraints, we
decided to develop a custom solution which would satisfy the
following conditions:

 Minimize overhead for message encoding,

 Require no additional RAM to encode/decode
messages, besides the necessary input and output
buffers,

 Consider the limitations of the hardware,

 Minimize the size of the program code.

The following terms are used throughout the paper:
Controller or hub – IoT-enabled device which acts as the

Internet gateway and is tasked with controlling a group of
sensor devices. It has constant or on-demand Internet access
and a means of communicating with other sensor devices, thus
functioning as a message relay between the Internet and sensor
devices.

Sensor device – Arduino-based device, equipped with
sensors for monitoring various parameters from the
environment and optional actuators to interact with the
environment. It connects to the controller via a mesh network,
but has no Internet access. Each sensor device runs an instance
of the SSDP software.

Mesh network – Ad-hoc network of sensor devices which
provides dynamic configuration, message delivery and
routing, as well as easy scalability, but without delivery
guarantee.

Pin – numerical, textual, logical, binary, or other
representation of a sensor reading or parameter on a sensor
device. The name stems from hardware pins on
microcontrollers. Each device has a set of variables in its
firmware which hold the pins‟ values. This set is maintained
by the SSDP software.

Command message – message sent from the controller to
a sensor device, which triggers a certain action and possibly a
response.

Status message – message containing pin values or other
information from the sensor device.

II. Related work
Cisco PacketTracer [6] network simulation software has an

extensive Arduino software library which encompasses the
core methodology for developing IoT sensor networks based
on Arduino-like single board computers. Tuxedo Message
Buffers [9] is a message routing system produced by Oracle,
with support for multiple message formats, one of which is a
self-describing binary format. It enables transfer of atomic
values, structs, lists, dested data etc. The Tuxedo software
enables communication over domain boundaries, utilizing
different communication technologies, as well as message
queuing, and events. Google Protocol Buffers [7] is an flexible

https://icetm.theired.org/

Proc. Of the 2nd International E-Conference on Advances in Engineering, Technology and Management - ICETM 2020
 Copyright © Institute of Research Engineers and Doctors. All rights reserved.
 ISBN: 978-1-63248-189-4 DOI: 10.15224/978-1-63248-189-4-10

52

and extensible platform for serializing structured data. It is
platform- and language-neutral and aims to provide a memory-
efficient binary format. Message types are specified by writing
metadata description files and compiling them with the
protocol buffers compiler, thus producing a class that
implements automatic encoding and parsing of the protocol
buffer data.

In [3] the authors demonstrate the use of low-cost
microcontroller-based sensor devices for data acquisition and
logging, focusing on the real-world application of open-source
hardware and software. The authors argue that the Arduino
platform has great potential for implementation in scientific
research applications, and can empower researchers with
flexible, inexpensive tools for expanding their data-collection,
automation and control capabilities. In [1], the authors
demonstrate a multi-sensor monitoring system, consisting of
open-source and inexpensive technology, which is used to
collect high spatiotemporal resolution information on the
presence of water and the occurence of flow in small
temporary streams in mountainous headwater catchments.
Their conclusions corroborate the need for wireless data
transfer as a direction of future development. Further
discussion on various sensor setups and their applications can
be found in [2], [4].

III. Protocol description
SSDP is a simple binary protocol based on the exchange of

command messages and status messages (Figure 3). Due to
limited memory and computational resources of the hardware,
messages are formed in such a way that they can be parsed in
one pass, without the need for additional buffers in the RAM.
A usual message has a header, followed by a sequence of
values, tagged with pin IDs and data types, except when data
types can be inferred from the message header itself.

Since in real-world scenarios, mesh networking may not be
reliable, and devices may go offline at times, the “best effort”
delivery strategy is a reasonable solution.

The communication strategy between the controller and a
sensor device can be formulated as follows:

 The controller sends a command to the device.

 Device processes the received command. If an answer
is requested, the device generates the appropriate
status message and transmits it back to the controller.

 Status messages containing sensor readings can be
periodically transmitted to the controller, out of band.

 Alarms trigger specific status messages to be
transmitted to the controller, out of band. For example,
too high a temperature in a beehive or sudden jolts and
orientation changes on the accelerometer can trigger
an alarm.

As there is no delivery guarantee, messages can be lost.
The controller must take note of the devices which did not
update their status for a long time and send the appropriate

alert to the backend. Alarms raised on sensor devices must be
reported repeatedly, for reasonably long periods of time, thus
increasing the possibility of reception. Various handshake
strategies can be used to signal reception of important
messages between devices. However, they are not integral to
the protocol.

A. Data Types
The following data types are natively recognized: Bool,

SByte, Byte, Int16, UInt16, Int32, UInt32, ByteArray, String,
Float, Time16, Date16.

The String and ByteArray data types follow the Pascal-
style string format. The length of the value is kept in the
leading byte, followed by an array of length characters (bytes).
This approach enables strings to contain null characters and
simplifies message construction and parsing. An example of a
string „Data‟ is shown in Figure X.

Offset 0 1 2 3 4
Data 4 „D‟ „a‟ „t‟ „a‟

Figure 3. The word „Data‟ stored as string

The Time16 data type packs time in two bytes, with a
resolution of 2 seconds. As the SSDP is meant to be used in
localized sensor networks, there is no provisioning for time
zones. Such information, if needed, must be provided by the
gateway or the backend server.

Bit 7 6 5 4 3 2 1 0

High byte H H H H H M M M
Low byte M M M M S S S S

Figure 4. The Time16 data type

The Date16 data type packs dates in two bytes, with epoch
starting in the year 2000. Thus, dates from 1/1/2000 to
12/31/2127 are supported.

Bit 7 6 5 4 3 2 1 0

High byte Y Y Y Y Y Y Y M
Low byte M M M D D D D D

Figure 5. The Date16 data type

Additional data types can be dealt with in two ways.
Fixed-length data types can be supported by extending the
binary parser and writer components within the SSDP library,
while variable-length data types can be stored within the
ByteArray data and handled appropriately in the software.

B. Message structure
Messages start with a header byte (Table 1, Table 2),

followed by data specific to the message type.

TABLE I. COMMAND MESSAGE HEADERS

Command Name Description
„S‟ Set Sets parameter values
„Q‟ Query Queries parameter values
„I‟ Info Queries metadata information
„V‟ Version Queries version information

https://icetm.theired.org/

Proc. Of the 2nd International E-Conference on Advances in Engineering, Technology and Management - ICETM 2020
 Copyright © Institute of Research Engineers and Doctors. All rights reserved.
 ISBN: 978-1-63248-189-4 DOI: 10.15224/978-1-63248-189-4-10

53

TABLE II. STATUS MESSAGE HEADERS

Status Name Description
„@‟ Value Parameter value
„#‟ Metadata Parameter metadata
„!‟ Error Error code

A pin value packet (PVP) is a special case of data, used to
transfer one pin value (Table 3). A pin data packet consists of
a pin ID, data type descriptor and actual data.

TABLE III. PIN VALUE PACKET STRUCTURE

Offset Name Length Description
0 PinID 1 byte Unique pin ID
1 Type 1 byte Data type descriptor

2..N+2 Value N bytes Actual pin value

Multiple PVPs can be concatenated to enable transfer of a
sequence of values within a message.

C. Commands
Commands are sent from the controller to sensor devices.

The command packet is processed by the SSDP library, pin
values are automatically updated, and the firmware is notified
of the changed values. The firmware can decide to send a
status message as a response to a command; out-of-band status
messages can also be sent periodically or when a certain
trigger at the device is activated.

1) Version
The Version command requests the identification number,

software version and name from the device. The command is
used to identify a device, but it can also be used to check
whether the device is online. The DeviceID field usually
contains a Date16 value followed by a Time16 value,
designating the manufacture time and date for the device.
Developers, however, can decide to use a different scheme for
generating device IDs.

Command format: ‘V’

Response: Status message with the following payload:

Offset Field Type Description
0 DeviceID UInt32 Unique device ID
3 Version major Byte
4 Version minor Byte
5 Name String Device name

2) Info

The Info command requests pin metadata from the device.
There are two variants. The first one requests the number of
pins and the second one requests metadata for one or more
pins, specified by the PinIndex values. In this way the
controller can discover the information about the pins on each
available device.

Command format: ‘I’

Response: Status message with the following payload:

Offset Field Type Description
0 NumPins Byte Number of pins on the device

Command format: ‘I’ PinIndex(byte) {PinIndex(byte)}

Response: Metadata status message, containing one or
more of the following payload segments:

Offset Field Type Description
0 PinID Byte Pin ID
1 PinType Byte Pin data type
2 PinName String Pin name

3) Query

The Query command requests actual pin values from the
device. Pins are specified by one or more PinID values.

Command format: ‘Q’ PinID(byte) {PinID(byte)}

Response: Value status message, containing one or more
of the following PVPs:

Offset Field Type Description
0 PinID Byte Pin ID
1 PinType Byte Pin data type
2 PinValue PinType Actual pin value

In the case of variable-length data types (String and

ByteArray) the PVP has the following format:

Offset Field Type Description
0 PinID Byte Pin ID
1 PinType Byte Pin data type
2 Length Byte Value length in bytes
3 Value Length Actual pin value

4) Set

The Set command sends one or more pin values to the
device, as an array of PVPs. The device verifies the datatype
of each passed value versus the corresponding pin‟s metadata,
and, if successful, assigns the new value to the pin.

Command format:

‘S’ PinID(byte) PinType(byte) PinValue(PinType)
{PinID(byte) PinType(byte) PinValue(PinType)}

Response: This command produces no response.

IV. Application example

The example demonstrates a typical use case of SSDP in
an Arduino project. The library is included in the project with
the following directive:

#include <SSDP.h>

Runtime parameters and sensor readings on the device are

stored in variables held in RAM. First, a structure is defined
which holds these values. The fields can be accessed and
modified by the device‟s firmware during program execution.

struct state_t {

 bool fan;

 float temp;

 float humi;

 float weight;

 uint8_t alarm;

} st;

https://icetm.theired.org/

Proc. Of the 2nd International E-Conference on Advances in Engineering, Technology and Management - ICETM 2020
 Copyright © Institute of Research Engineers and Doctors. All rights reserved.
 ISBN: 978-1-63248-189-4 DOI: 10.15224/978-1-63248-189-4-10

54

To conserve RAM, field names are stored in program
memory using the PROGMEM modifier.

const char strDeviceName[] PROGMEM = "IoT Device";

const char strTime[] PROGMEM = "Fan";

const char strTemp[] PROGMEM = "Temp";

const char strHumi[] PROGMEM = "Humi";

const char strWeight[] PROGMEM = "Weight";

const char strAlarm[] PROGMEM = "Alarm";

Next, the ConfigInfo object is created, which provides the
core functionality of the SSDP. Metadata for the fields is
registered in the SetupCfgFields() function. A global callback
“gcb” is registered, as well as the pin-specific callback named
“tcb” (Listing 3). Pin callbacks are invoked each time a value
change is detected in the corresponding variable, and global
callback is invoked on each value change.

ConfigInfo cfg;

void SetupCfgFields() { // called from Setup()

 cfg.init(5);

 cfg.initField(101, strFan, &st.fan, pdtBool, pmOutput);

 cfg.initField(201, strTemp, &st.temp, pdtFloat, pmInput, tcb);

 cfg.initField(202, strHumi, &st.humi, pdtFloat, pmInput);

 cfg.initField(203, strWeight, &st.weight, pdtFloat, pmInput);

 cfg.initField(204, strAlarm, &st.alarm, pdtByte, pmInput);

 cfg.setEventHandler(gcb);

}

After initialization, the library is ready for use. The
developer needs to implement the code to route incoming
command packets to the config object, using the
processCommand() method. The SSDP library takes care of
updating the field values and raising appropriate notifications.

 uint8_t rez =

 config.processCommand(buffer, buflen, dest, destLen);

The processCommand() method invokes the four basic
commands, Version, Info, Set and Query. It builds the
appropriate response message and stores it into the destination
buffer. The length of the response is returned as the result. It is
the responsibility of the developer to transmit the response.
The developer can choose to generate out-of-band status
messages and transmit them to the controller.

In this way the developer can write his/her firmware
around the SSDP library, with the single requirement that
messages are regularly routed into and out of the library.

V. Conclusions
As the need for implementation of large sensor networks

grows, economy and simplicity of development have become
essential. Arduino devices are a suitable platform for the
development of low-cost sensor devices, which support a
simple and economical communications infrastructure. The
SSDP protocol is a simple, low-footprint solution for
command and data exchange between devices in a mesh
network.

References

[1] R. S. Assendelft, H .J. I. van Meerveld, “A low-cost, multi-sensor

system to monitor temporary stream dynamics in mountainous
headwater catchments”, Sensors, 19(21), pp. 46-45; 2019,
https://doi.org/10.3390/s19214645

[2] D. Bri, H. Coll, M. Garcia, J. Lloret, “A multisensor proposal for
wireless sensor networks,” 2nd International Conference on Sensor
Technologies and Applications, Cap Esterel, 25-31 August 2008, pp.
270-275.

[3] D. K. Fisher, P. J. Gould, “Open-source hardware is a low-cost
alternative for scientific instrumentation and research”, Modern
Instrumentation, vol. 1, pp. 8-20, 2012.

[4] K. A. Noordin, C. C. Onn and M. F. Ismail, “A low-cost
microcontroller-based weather monitoring system,” CMU Journal, Vol.
5, No. 1, pp. 33-39, 2006.

[5] Arduino, “An Open-Source Electronics Prototyping Platform”
http://www.arduino.cc (Accessed May 2020)

[6] Cisco PacketTracer – Network Simulation Tool,
 https://www.netacad.com/courses/packet-tracer (Accessed May 2020)

[7] Google Protocol Buffers, https://developers.google.com/protocol-
buffers/ (Accessed May 2020)

[8] RF24Mesh, A user friendly mesh overlay for sensor networks using
RF24Network and nRF24L01 radio modules,
https://tmrh20.github.io/RF24Mesh/ (Accessed May 2020)

[9] Tuxedo Message Buffers,
https://www.oracle.com/middleware/technologies/tuxedo.html
(Accessed May 2020)

Đorđe Herceg

Faculty of Science, University of Novi Sad
Serbia

Ivan Petković

Faculty of Electronic Engineering, University of Niš
Serbia

Dejana Herceg

Faculty of Technical Sciences, University of Novi Sad
Serbia

https://icetm.theired.org/

