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Abstract—Public key cryptography is extensively used for 

encryption, signing contracts and secure exchanges over the 

unreliable network. The findings of Shor in 1994, of a 

powerful algorithm which was based on quantum mechanics 

for computing discrete logarithms and factoring large integers 

sabotaged the security presumptions upon which the currently 

used public key cryptographic protocols are based, like 

ElGamal, RSA and ECC. However, few cryptosystems, known 

as post quantum cryptosystems, while not currently in wide use 

are considered to be resistant to such attacks. In this paper, a 

quantum version of ElGamal Cryptosystem is proposed whose 

security relies on the commutative rotation transformations 

and measurements in computational basis of qubits. An 

understanding of the new scheme over the quantum channels 

is provided. The proposed cryptosystem allows the party to send 

messages in the form of qubits over a quantum channel. Also 

the proposed protocol provides an opportunity for two parties 

to exchange keys which is considered as one of the major 

concerns while developing post quantum cryptosystems. 

Keywords—Quantum, elgamal, shor, post quantum, 

commutative rotation, qubits, cryptosystem. 

I.  Introduction 
Cryptographic protocols present a significant role in 

the secure sharing of data or information over an 
unreliable network. Protocols such as ElGamal [12], 
Diffie- Hellman (DH) key agreement [13] and the RSA 
encryption schemes [3] consistently provide methods for 
secure encryption or key exchanges for many operations 
over the Internet. The security which these protocols 
guarantee is based on mathematical hypothesis such as 
difficulty of determining the discrete logarithm [4] or 
factoring large numbers into primes. However, since the 
discovery of the Shor’s algorithm[5], these problems are 
vulnerable to quantum algorithms. Taking the example of 
the factoring problem, factoring a large number reduces to 
the problem of finding periods of certain functions which 
the quantum computers made possible by using the 
quantum fourier transform. Hence the security provided 
by these protocols seems to be short-lived with the arrival 
of quantum computers. 

However, few cryptosystems, called quantum and post 
quantum cryptosystems, while not widely in use are 
considered to be resistant against quantum computing 
based attacks. Post quantum cryptosystems are the 
classically intractable cryptosystems that are proved to be 
secure against the attacks proposed by Shor [5]. These 
cryptosystems are not widespread as most of them are 
built on lattices, goppa codes, braids etc. and are tedious 
to implement in practicality. However these platforms are 
the reason behind the security of these cryptosystems 
against the quantum computing based attacks. Some of the 
popular post quantum cryptosystems are LWE, RLWE, 
NTRU, McEliece etc [6, 7, 8, 9]. Quantum cryptosystems 
are the parallels of classical cryptosystems in the quantum 
setting. Contrary to classical binary bits, quantum 

cryptosystems work on quantum bits or qubits that can 
take values 0, 1 or a superposition of the two. Working 
with qubits opens up large possibilities of algorithms that 
can be formulated over a quantum channel. Some of the 
recently proposed quantum cryptosystems are quantum 
diffie-hellman (QDH) [10], BB84 [11] etc. The quantum 
cryptosystems majorly consist of key distribution schemes 
over a quantum channel because there is a limit to the size 
of messages which can be sent over the quantum channel 
in the form of qubits. 

In this paper, we propose a quantum version of the 
ElGamal protocol (QE(m)), m being the number of 
computational bases required in the protocol. Analogous 
to the classical version of the protocol, QE(m) is an 
encryption protocol as well where any one of the parties 
try to send an encrypted message to the other which is 
then decrypted by the other party and the actual message 
is retrieved. The computational basis is publically 
available to the two parties. The qubit sequences are 
manipulated by rotating them according to the set of basis 
and transmitted over a quantum channel. The received 
sequence of qubits are again rotated according to the bases 
and measured to recover the encrypted bits. The 
organisation of this paper is as follows. In section 2, we 
present the classical ElGamal cryptosystem [12] that is 
vulnerable to quantum computers. In section 3, we will 
look at the principles of quantum cryptosystems. In 
section 4, we review the quantum diffie-hellman protocol 
[11] on which our cryptosystem is based upon. In section 
5, we present our quantum elgamal cryptosystem. In 
section 6, we provide the security analysis of the proposed 
protocol and finally we conclude the paper in Section 7. 

II. ElGamal Cryptosystem 
In 1985, ElGamal presented a new cryptosystem to the 

world which relied on the difficulty of finding a solution 
to the hard discrete logarithm problem in Fp. 

Theorem 1 (Discrete Logarithm Problem) Given a 
primitive root g of the multiplicative group Fp and a 
random element a of Fp , the discrete logarithm problem 
(DLP) is the hard computational problem of finding x 

such that a ≡ gx
(modp). 
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The ElGamal cryptosystem can be briefly described as 
follows: 

1. Key generation  

• Select a large prime number p and a 
primitive root (generator) g of the multiplicative 

group (Z/pZ)
∗
.  

• Randomly select an integer a such that 2 ≤ 
a ≤ p−2.  

• Compute b ≡ ga
(modp).  

• Make the key (p, g, b) public and keep the 
key a as private. 

2. Encryption  

• Represent the message to be transmitted as 
a positive integer m < p.  

• Randomly choose an integer k with 2 ≤ k 
≤ p−2.  

• Encrypt m with the public key (p, g, b) 
using the rule 

γ ≡ g
k
(modp)  

δ ≡ mb
k
(modp) 

3. Decryption  

• The receiver decrypts the message using the 

rule m ≡ γ−a
δ(modp). 

• Transform the positive integer m into the 
original message. 

The correctness of the decryption in the El Gamal 
cryptosystem is as follows. We have 

γ
−a

δ ≡ (g
k
)
−a

mb
k ≡ (gk

)
−a

m(g
a
)

k ≡ m(modp) 

 

The most common attack on an El Gamal 
cryptosystem is to solve the discrete logarithm problem. 
There are three basic types of discrete logarithm algorithm 
solvers: Pollard’s rho algorithm, the Pohlig-Hellman 
algorithm, and the index calculus algorithm. The 
complexity of Pollard’s rho algorithm and the Pohlig – 
Hellman algorithm are exponential while the expected 
running time of the index calculus algorithm is with a 
constant c > 0. For comparison, the running time of 
Shor’s algorithm for discrete logarithm on a quantum 
computer is . 

III. Quantum Diffie-Hellman 
Protocol 

The Quantum Diffie – Hellman[10] (QDH(t)) is a key 
exchange scheme wherein Alice and Bob obtain a shared 
secret key based on the knowledge derived from each 
other. In QDH(t), Alice and Bob both control a sequence 

of qubits, whose states are shaped using the rotational 
quantum operations. These sequence of qubits are 
exchanged through a quantum channel. Each qubit upon 
receiving at each end is again manipulated and measured 
against the specified bases. Finally their values are stored 
by both the parties. In the protocol, QDH(t), t is the 
number of bases accessible to both Alice and Bob for the 
measurement of qubits at each step. Alice and Bob 
comply on the set of t bases, B1, B2, ..., Bt, t>1, to be used 
for measurement and the number of qubits to be utilised, 
m. The value of m depends on the required key length and 
the fact that some of the qubits will be discarded during 
detection of Eve’s existence. Finally, they agree on the 
initial state of qubit to be |ψ〉  = |0〉 . 

Phase 1:  

• Alice independently and arbitrarily chooses 
m bases B1

a
, B2

a
, ..., Bm 

a
 out of the available t 

bases such that Bi
a ∈ {B1, B2, ..., Bt}.  

• She also sets up a uniform and random bit 
sequence of length m : a1, a2, ..., am.  

• Similarly, Bob independently and arbitrarily 
chooses m bases B1

b
, B2

b
, ..., Bm 

b
 out of the 

available t bases such that Bi
b ∈ {B1, B2, ..., Bt}.  

• Bob also sets up a uniform and random bit 
sequence of length m : b1, b2, ..., bm. 

Transmission of Qubits:  

1. Alice encodes the bit ai in base Bi
a
 by 

applying the transformation Ui
a
 to |0〉 , where Ui

a
 

= R(θai) is a quantum rotation transformation and 
sends the qubit to Bob over a quantum channel.  

2. Similarly Bob encodes the bit bi in base Bi
b
 

by applying the rotational transformation Ui
b
 to 

|0〉 , where Ui
b
 = R(θbi) and sends the qubit to 

Alice over the same quantum channel. 

Measurements: Upon reception of the qubit from the 
other party, Alice and Bob execute the following 
operations.  

1. Alice applies two rotation transformations 
to the qubit received from Bob: first she applies 
the transformation Ui

a
 to the qubit and then 

applies Uslack(Bi
a
) to the qubit.  

2. Alice measures the qubit in basis Bi
a
 and 

stores the resulting bit as ki.  

3. Similarly, Bob applies two rotation 
transformations to the qubit received from Alice: 
first he applies the transformation Ui

b
 to the qubit 

and then applies Uslack(Bi
b
) to the qubit.  

4. Bob measures the qubit in basis Bi
b
 and 

stores the resulting bit as ki'. 

Where Uslack(Bj) is also a rotational transformation 

R(90
◦−θ0) for that basis.  

Phase 2: Let K = k1, k2, ..., km and K' = k1', k2', ..., km' 
be the sequence of the bits recorded by Alice and Bob 
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during the protocol stage, respectively. The following 
operations are performed to obtain a common shared key. 

1. Alice and Bob disclose their respective 
sequence of bases Bi

a
’s and Bi

b
’s to each other 

over the public channel.  

2. For each agreement i, where Bi
a
 ≠ Bi

b
, 

reject the values ki and ki' from K and K'.  

3. Alice and Bob arbitrarily select k bits from 
the remaining sequence of bits and match their 
values. If Eve has hampered with their 
exchanges, they will witness error and can reject 
the key. 

The number of matching bits and the size of the subset 
k may vary depending on the efficiency and the security of 
the executed protocol. 

IV. Quantum ElGamal 
Cryptosystem 

Diffie-Hellman key exchange algorithm was 
simplified by introducing a random exponent k which was 
the replacement for the private exponent of the receiving 
entity, and the algorithm thus obtained was ElGamal. This 
simplification made it possible for an entity to encrypt in 
one direction, without the requirement of the second entity 
to take actively part. In this section, a Quantum version of 
the ElGamal cryptosystem will be introduced to the 
reader. 

A. Key Generation 
The basic necessity for a cryptographic protocol is at 

least one key in symmetric algorithms and two keys in 
asymmetric. In ElGamal, only the receiving party is 
required to create a key beforehand and publish it. We 
will now follow Bob with his scheme of key generation in 
the Quantum version of the protocol. 

1. Computational bases selection  

First Bob needs to select a set of m bases, B1, B2 , ..., 
Bm , m > 1, to use. The value of m is dependent on the 
number of qubits to be used which is further dependent on 
the desired length of a single block of message to be 
encrypted. For every basis Bi, there exists two rotation 
transformations R(θ0) and R(θ1) for bit 0 and bit 1, 
respectively. Also we have θ1 = θ0 + 90

◦
 . For example, 

the bases can be of the form {0
◦
, 90

◦
}, {30

◦
, 120

◦
}, {41

◦
, 

151
◦
} and so on. 

2. Private key generation  

Bob generates m random and uniform bits b1, b2, ..., bm 
each time Alice creates a new session with him. This 
uniform bit sequence of length m acts as the private key 
for Bob. 

3. Public key assembling  

For every 1 ≤ i ≤ m, Bob encodes bi in base Bi by 

applying Ui
b
 to |0〉  , where Ui

b
 = R(θbi) and sends the 

qubit     |B〉  to Alice through the quantum channel.  

4. Public key publishing  

The public key for Bob now consists of the set of m 
bases, B1, B2 , ..., Bm , m > 1 and the rotated qubits |B〉  
which is generated afresh and sent through the quantum 
channel each time Alice creates a new session. 

B. Encryption Procedure 
To be able to encrypt a message M to Bob, Alice first 

needs to create a fresh session with Bob and obtain his 
public key i.e. the qubit |B〉  along with the m 
computational bases. Alice has to follow the following 
steps for the encryption of the plaintext message M. 

1. Obtain the public key  

As mentioned above, Alice has to start by creating a 
new session with Bob and obatin the public key of Bob 
i.e. the qubit |B〉  through the quantum channel along with 
the m computational bases from a trusted keyserver.  

2. Prepare M for encoding  

Write M as set of sequence of uniform bits of length 
m(m1, m2, ...). These sequence of bits will be encoded one 
by one, using the qubits and the computational bases.  

3. Select random bit sequence  

In this step, Alice has to select her own set of random 
and uniform bit sequence of length m, a1, a2, ..., am, which 
will act as the random exponent k of the classical ElGamal 
cryptosystem. The randomness is an important factor here 
as the possibility to guess the sequence of bits gives a 
sufficient amount of information to the attacker, necessary 
to decrypt the message.  

4. Compute public key  

To transmit the random bit sequence a1, a2, ..., am, to 
Bob, Alice computes the qubit |A〉  by applying Ui

a
 to |0〉  

using the bases obtained from Bob, where Ui
a
 = R(θai) and 

sends it to Bob using the quantum channel.  

5. Encrypt the plaintext  

In this step, Alice encrypts the plaintext message M. 
For this, she iterates over the set of bit sequences created 
in step 2 and encodes each of the mi as: 

• Upon receiving the qubit |B〉  from Bob, Alice 
applies two rotation transformations: first she applies her 
Ui

a
 to the qubit and then she applies Uslack(Bi) to the qubit. 

Then she measures the obtained qubit in basis Bi and 
records the resulting bit as ki. Uslack(Bi) is defined as 

R(90
◦−θ0) for that basis.  

• Depending on ki, we define the final bases for 

encryption of the plaintext. If ki is 0, we select the 
Basis ⊕ = {|↑〉  , |→〉 } and if ki is 1, we select 

the Basis ⊗ = {|↖〉 , |↗〉 } for encoding the bits of the 

plaintext.  

• Encoding of the bits of mi is done as follows, Thus, 
Alice sends the m photons to Bob through the quantum 

channel, each in any one of the states |↑〉 , |→〉 , |↖〉  or 

|↗〉  as shown in Table 1. 



 

136 

 

Proc. of The Sixth Intl. Conf. On Advances In Computing, Control And Networking - ACCN 2017 
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved. 

ISBN: 978-1-63248-117-7 doi: 10.15224/ 978-1-63248-117-7-52 

 

C. Decryption Procedure 
After receiving the qubit |A〉  followed by the set of 

qubits |Mi 〉  , Bob has to decode the photons to be able to 
read the plaintext M . Therefore the decryption algorithm 
can be divided in a few steps:  

1. Compute shared key  

Upon receiving the qubit |A〉  from Alice, Bob applies 
two rotation transformations: first he applies his Ui

b
 to the 

qubit and then he applies Uslack(Bi) to the qubit. Then he 
measures the obtained qubit in basis Bi and records the 
resulting bit as ki.  

2. Decryption  

Depending on ki, Bob selects any one of the 
bases ⊕, ⊗ and measures the receiving photons in the 

respective basis to obtain the plaintext bit by bit.  

After combining all of the mi, Bob is able to read the 
message M sent by Alice. 

V. Security Analysis 
The security of the Quantum-Elgamal-type 

cryptosystems is based on the fact that measurement of a 
qubit or quantum bit destroys it’s state that is the qubit is 
left in either of the two pure states. To decrypt the 

message sent by Alice, the eavesdropper, Eve has to 
decode or measure the quantum bits for 
which he requires to have the knowledge 
about the bases ⊕, ⊗ and for that he must 
know the shared key. Now suppose Eve 
tries to measure the sequence of qubits 
|B〉  against the m computational bases to gather 

knowledge about the secret bit sequence b1, b2, ..., bm of 
Bob, Alice would know about his presence as the qubits 
recepted at her end would be present in the pure states. 
Hence, the protocol is considered secure against a passive 
attacker. Also, in the situations where the protocol might 
be used as a key agreement protocol, it would present 
perfect forward secrecy as Bob generates fresh sequence 
of uniform bits each time Alice requests for a new session 
of key exchange. 

TABLE I.  ENCODING OF BITS 

 0 1 

Basis ⊕ = {|↑〉 , |→〉 } |↑〉  |→〉  

Basis ⊗ = {|↖〉 , |↗〉 } |↖〉  |↗〉  

 

Conclusion 

A new quantum elgamal cryptosystem is explained. 
We presented a cryptosystem that was derived from the 
quantum version of diffie-hellman as described before, but 
might be seen as an improvement as the elgamal 
cryptosystem can be used for signing messages or 
encryption in one direction without direct interaction 
between the parties. The protocol exchanges a pair of 

sequences of qubits between two parties over a quantum 
channel and uses computational bases as a parameter for 
commutative quantum rotation transformations to decrypt 
the message. Post quantum cryptography is an up-and-
coming area of research that had come up after the 
introduction of Shor’s algorithm. The classical 
cryptosystems like RSA, Diffie- Hellman and ElGamal 
will be completely obsolete with a quantum computer. 
Hence, the future studies require more research work in 
this field. 
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