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Abstract—A new key agreement scheme based on elgamal 

and triple decomposition problem over non commutative 

platforms is presented. An understanding of the new scheme 

over braid groups is provided and the strengths of it over an 

earlier scheme that rely on a similar system based on other 

decomposition problems are discussed. The new scheme 

provides better security over earlier schemes on non-

commutative platforms by countering the linear algebra and 

length based attacks. 
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I.  Introduction 
In a key exchange scheme, secrecy of the shared key is 

the major concern. The security of the Diffie-Hellman key 
exchange scheme relies on the difficulty of the Diffie-
Hellman problem over finite fields. Emergence of index 
calculus attacks against the discrete logarithm problem, 
developments in quantum computing, and continuous 
research in the field have led to search for new 
cryptosystems that rely on different kind of hard problems. 

In 1999 Anshel et al. introduced a key exchange scheme 
using non-commutative groups which he called the 
Commutator key exchange protocol which was based on the 
difficulty of conjugacy search problem [8]. Following this, 
Ko et al. in 2000 and Cha et al. in 2001 presented some new 
schemes which were also based over non-commutative 
platforms [11]. Another key agreement protocol that works 
in ElGamal setting and relies on solving conjugacy problems 
on non-commutative groups has been proposed by D. 
Kahrobaei and B. Khan in 2006[1].  

In this paper we propose a system that works over non-
commutative platform and is designed to counter the 
problems and weaknesses of the earlier systems.  The 
conjugacy problem is to decompose a given element u in the 

group, into a
−1

ga where g is known and a is unknown. Even 

though this problem is hard in general, the special 
requirements for the system to be practical and the linear 
nature of the relations between the private and public keys 
allowed some attacks against the scheme [9].  

In the new scheme the adversary has to deal with 
quadratic equations in addition to the linear ones in order to 
search for a key. One category of attacks against 
decomposition based key exchange schemes use linear 
representation of braids [4,15,16]. Another category of 
attacks uses a length based probabilistic method to solve 
equations [10]. We provide the effectiveness of these attacks 
on the new scheme in section 6. These polynomial-time 
algorithms do not seem to apply to the new scheme 
proposed in this manuscript as is stated in [11] (page 18).  

II. Previous Work 
The ElGamal key exchange protocol [1] similar to ours 

based on conjugacy search problem operates as follows. A 
finite non-abelian group G is selected which is believed to 
have solvable word problem. S, T < G are two subgroups of 

G whose elements satisfy the commutative property i.e. let s 
∈ S and t ∈ T then st = ts. Also, given a, b ∈ G, we say 

that the conjugate of a by b is b
−1

ab and write it as a
b
. 

    The protocol operates between two parties Alice and Bob 

where Alice wishes to share a session key x ∈ G with Bob. 

Bob takes s ∈ S, b ∈ G and publishes b and c = b
s
 as his 

public key. Alice selects t ∈ T and sends 

E = x ( c
 t
 ) 

to Bob, along with 

h = b 
t
 

With the help of h, Bob calculates ( b 
t
 )

s
 = c 

t
 along with 

E' = ( c 
t
 )

−1
 

because of which he is able to decrypt and obtain the session 
key, 

                       
 

The security of the scheme rests on the fact, to deduce Bob’s 
private key would require solving the equation c = b

s
 for s, 

which is known to be computationally hard problem 
commonly called the conjugacy search problem. However, 
some recent works in the field [4] show that even if the 
conjugacy search problem is hard, it is still possible to 
generate a copy of the session key (equivalent/ pseudo key) 
w.r.t. the linear representations of braid groups.  

Lawrence - Krammer or Burau representations being 
some of those representations (section 3). In the setting of 
braid groups even if the problem of computing the session 
key is hard for the adversary, the equations can be 
transformed into a different form where the computation of 
the equivalent session key is possible. 

III. Braid Groups and their 
Representations 

In this section, we will provide a brief description on 
braid groups, their different properties and representations.  
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Consider n parallel strands with i

th
 strand crossing over 

the i+1
th

 strand, this is a simple example of a Braid. 

The set <Bn,∗> is referred to as a group for 
Bn to be a collection of n strands with different 
possible orientations and ∗ to be a binary 
operation on Bn (in this case catenation). 

Bn = <σ1 , σ2 , σ3 , ..., σn−1> 

Just like all the other groups, braid groups satisfy all the 
properties of a group, 

Closed  : Catenation of two Braids is a Braid. 

Inverse : Inverse of a Braid is the mirror image of that 
Braid. 

Identity : n parallel strands represent an Identity braid. 

Artin in [3] proposed a presentation of braids in the form 
of Artin generators σ where σi refers to the i+1

th
 strand 

crossing over the i
th

 strand with all the other strands 
unchanged. Any braid can be decomposed into a sequence 
of artin generators. 

 Braid group generated by artin generator satisfy two 
relations: 

          , | i − j | ≥ 2                 (1) 

              , | i − j | = 1            (2) 

Relation (1) is known as the swap relation and (2) is 
known as the shift relation. Both these relations are helpful 
in reducing the braids to simpler forms. 

There are other forms as well in which braid groups are 
presented. We define a symmetric group Sn over an n 
element set In = { 1, 2, ..., n } along with Ref, the set of 
reflections in Sn = {( i, j )| 1 ≤ i < j ≤ n} . Let S = {( i, i+1)| 
1≤ i < n} be the subset of Ref. Any braid S can be presented 
in the form of sequence of elementary si’s , shortest possible 
presentation is used to define the length function, 

                                

Another presentation on braids is defined with the help 

of generators { rs | s ∈ Sn } with relations 

                                 

The largest permutation w with w(i) = n + 1 − i yields 

a braid Δ, known as the fundamental braid. In this 
presentation, a braid x is uniquely written as, x = Δ

k
x' where 

x' lies in Bn
+ − ΔBn

+
 (Bn

+
 is positive braid) also referred to 

as normal form of x. Let x∈ Bn
+
 be a braid, the greatest y 

such that { y ∈ rSn | y ≤ n } is called leftmost factor of x( 

LF(x)). A sequence of braids ( x1 , x2 , ..., xk ) in rSn − {1} is 

called the greedy form of x if LF(xi xi+1) = xi for all i and x1 
x2 ...xk = x. The k here is known as the charney length. 

A. Representation 
A representation of a group G is a map P : G→GL(n,F), 

where GL is a group of n × n invertible matrices over field 
F. The basic idea behind a representation is that in a 
representation, we transfer each element of the group G to a 
corresponding matrix where the where the Binary relation 

w.r.t. the group is changed to matrix multiplication. An 
important aspect in this theory is whether a proposed 
representation is faithful. A representation P is faithful for P 
to be injective, because of which we sent the group elements 
to a unique matrix. Sometimes we use the phrase linear 
representation to denote faithful ones. For the Braid Groups, 
a popular faithful representation is the Lawrence – Krammer 
representation. 

B. Lawrence - Krammer 
Representation 
We will now discuss the Lawrence – Krammer 

representation for the braid groups. The representation is 
defined by K : Bn → GL (m, Z [t

±1
][q

±1
]) where q and t are 

the invertible elements of the commutative ring R with basis 

{ xi,j | s(i, j) ∈ Ref } . K(σk) is called the krammer matrix 

w.r.t. the basis xij for a braid σk . Jung Hee Cheon and 
Byunheup Jun in [4] talked about the bounds of the entries 
in krammer matrix.   

According to Theorem 1 presented in [4] for a braid x 
having the canonical form Δ

k
x1x2...xl with δ to be the 

minimal number of Artin generators in x, following are the 
bounds for the entries in K(x) . 

● k ≤ degree of t ≤ k+l. 

● 2(n−1) min(0,k) + (n−2) ≤ degree of q ≤ 2(n−1) 

max(k, k+1) + (n−2) . 

● Each entry in K(x) is considered to be a polynomial 

in t, q and 1 − q. 

Krammer representation has been proven to be faithful 
for 0<q<1 [3]. Hence we will consider a krammer matrix 

K'(x) = K(x)q=1/2 so that q = 1 − q 

Now the new bounds are. 

● k ≤ degree ∈ t ≤ max(k, k+l) . 

● Each entry of K'(x) when represented as a ratio of 

two integers, the numerator is bounded by 

2
d−2(n−1)k

 whereas the denominator is bounded by 

2
2(n−1)max(k,k+l)

 . 

C. Inverting the Lawrence - Krammer 
Representation 
To obtain an equivalent key i.e. to break the system, we 

need to define an algorithm to invert the Lawerence - 
Krammer representation. Several work has been done to 
invert the Krammer representation. Recently Arkadius G. 
Kalka in [5] proposed an algorithm to invert the Krammer 

representation to obtain a preimage braid x ∈ Bn in LNF 

(left normal form). Eonkyung Lee in [6] proposed a way to 

invert the Krammer representation in O(|Δ
−inf(x)

x|n
6
) where 

inf(x) refers to infimum of x. Here we will enlighten on the 
algorithm proposed by Jung Hee Cheon and Byunheup Jun 
in [4] to recover a braid from its corresponding image matrix 
in Lawrence Krammer representation. 

Algorithm 1 : Invert Lawrence - Krammer 
representation. 

Input : A matrix K(x) ∈ GLm(t
±1

, q
±1

) where 
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m=n(n−1)/2 

Output : A braid x ∈ Bn. 

(a) Compute K(x') = K(Δ)
−dt

K(x). 

(b) Perform the basis change from (vij)ij → (xij)ij. 

(c) For k=1 to l do 

i. Take a nonzero element y∈Dυ [7] and 

compute A={cij|K(x')y has a non-zero coefficient 
at the ij coordinate}. 

ii. Compute the maximal element τk∈Sn such 

that L(z) ⊂ A as follows. 

● Find all reflections σi = (i, i+1) 

with 1 ≤ i < n such that 

L(σi) ⊂ A 

● Given τσi and τσj , a greater 
element is selected from τσiσj 
or τσiσjσi 

● Find the maximal element τk 
∈ Sn by the recursive use of 

the above method 
iii. Compute the positive braid xk 

corresponding to τk 

iv. Replace K(x') by K(xk)
−1

K(x') 

(d) Output x = Δ
dt

 x1 x2 ...xk. 

 

    The complexity of this algorithm is about dt power of a 
matrix and n

2
 multiplication of permutations, which is 

dominated by dt power of a matrix. 

IV. Attack on the scheme 
The key exchange scheme presented in section 2 has the 

parameters as b∈G, c=bs
, h=b

t
 and       . To attack 

the scheme, we should be able to recover c
t
 from the given 

public parameters b, c and h to get information about the 
session key x. However, the above problem is referred to as 
conjugacy search problem which is computationally a hard 
problem.  

Now, we will propose an attack on the scheme, which 
will be an extension to the attack on the DHCP presented by 
Jung Hee Cheon and Byunheup Jun in [4]. We will analyse 
the scheme for G to be a braid group of n strands(Bn) with S, 
T < G be two subgroups LBn and RBn respectively. Without 
solving the conjugacy problem in Bn, we solve it in 

GLm(Z[t
±1

][q
±1

]), where q=1/2 and m=n(n−1)/2 using 

lawrence - krammer representation for braid groups. Let the 
images of s, t, b, c and h under this representation(K') be S, 
T, B, C and H respectively. We consider a matrix S in 
GLm(Z[t]) satisfying, 

BS = SC 

SK'(σi) = K'(σi)S, for n/2 < i < n 

Let S' be the invertible matrix solution to the above 
equations, using S', equivalent session key can be computed 
as follows, 

key = SHS
−1

 

key = STBT
−1

S
−1

 

key = TSBS
−1

T
−1

 

key = TCT
−1

 

key = K(tsbs
−1

t
−1

) 

Here, S is playing the role of a pseudo key because of 
which it is used in place of s. Now we will propose the 
algorithm to find the shared key using an equivalent key for 
ElGamal encryption in matrix representation using Gaussian 
Elimination and finally inverting the matrix to obtain the 
actual braid. 

Algorithm 2 : Find the shared session key. 

Input : b ∈ Bn(G), s ∈ Lbn(S), t ∈ Rbn(T), 

m=(n(n−1))/2, E, a prime p and an irreducible 

polynomial of degree d. 

Output : Shared key x. 

(a) Let k represent the residue field Z[t] / (p,f(t)) . 

(b) Calculate the images of b, c=sbs
−1

 in Glm(k) using 

K'. 

(c) Formulate a system of 1/8n
4
 linear equations in a 

total of 1/7n
4
 variables from the equations K'(b)S=SK'(c) 

and SK'(σi) = K'(σi)S for n/2 < i < n over k. 

(d) Apply Gaussian Elimination to solve for S. 

(e) If S is non-singular, compute S
−1

 , else go back 

and calculate a different solution for S. 

(f) Calculate K'(h) = tbt
−1

 and output SK'(h)S
−1 

= 

K'(tsbs
−1

t
−1

) . 

(g) Use Algorithm 1 to compute c 
t
 = tsbs

−1
t
−1

. 

(h) Calculate x using         
. 

Gaussian Elimination step takes 1/3m
T
, where T ∼ 

2.376 (theoretically), a finite field of degree d takes d
2
 

multiplications. When p is sufficiently large, one 
multiplication takes O(log(p)loglog(p)logloglog(p)) time 
using Schonhage and Strassen method. Using these 
statistics, Jung Hee Cheon and Byunheup Jun in [4] 

proposed an overall time complexity of 2
−5

l
2
n

4T
f(d) bit 

operations, where f(x) = xlog(x) loglog(x) and d is the word 

length of stbt
−1

s
−1

 less than 2ln
2
 . 

V. The new scheme 
In 2014, Y. Peker [2] proposed a new key exchange 

scheme based on triple decomposition problem which was 
proven to resist the attacks mentioned above. Hence we 
propose a non - commutative key exchange in polycyclic 
groups using a modified ElGamal which uses triple 
decomposition problem. 
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Definition(Triple Decomposition Problem) : Let T, S, A 

be the subsets of a non-commutative group G where t ∈ T, 
s ∈ S, a ∈ A & u ∈ G and 

u = tas 

The the triple decomposition is the problem of finding a, 
t, s given u. Or in other words decomposing an element into 
a set of elements in which exactly three of them are 
unknown. Hence, the security of the proposed scheme lies 
on the triple decomposition problem. 

A. The Protocol 
The scheme requires a monoid G and two series of 

subsets S & T of G each, S = {S1, S2, S3, X1, X2} and T = {T1, 
T2, T3, Y1, Y2} where the elements of X1, X2, Y1, Y2 are 
invertible and [S2, Y1], [S3, Y2], [T1, X1], [T2, X2] are pair wise 
commutative. Please note that in our protocol we define 

conjugate of a by b to be b
−1

ab and write it as a
b
 . 

 The protocol resides between two parties Alice & 

Bob. Suppose Alice wishes to share a session key x ∈ G 

with Bob. The protocol proceeds as follows, 

1. Alice selects s1 ∈ S1, s2 ∈ S2, s3 ∈ S3, x1 ∈ X1, 

x2 ∈ X2 and calculates 

u = s1x1 

v = x1
−1

s2x2 

w = x2
−1

s3 

2. Bob selects t1 ∈ T1, t2 ∈ T2, t3 ∈ T3, y1 ∈ Y1, y2 
∈ Y2 and calculates 

p = t1y1 

q = y1
−1

t2y2 

r = y2
−1

t3 

3. Alice computes k1 = s1ps2qs3r and sends     to 
Bob. 

4. Bob calculates k2 = ut1vt2wt3 and then       
  

, thus 
retrieving the session key.    

 Proof of correctness: 

k1 = s1ps2qs3r 

k1 = s1(t1y1)s2(y1
−1

t2y2)s3(y2
−1

t3)  

k1 = s1t1s2t2s3t3 

 

k2 = ut1vt2wt3 

k2 = (s1x1)t1(x1
−1

s2x2)t2(x2
−1

s3)t3 

k2 = s1t1s2t2s3t3 

Hence, k1 = k2 , thus 

        
  

        
  

 

     
  

   

VI. Security Analysis 
Apart from some of the trivial choices of the subsets 

which make the system vulnerable to attacks, the only way 
to attack the system is to extract the private keys from the 
public information. Now for this the attacker would have to 
solve the following equations. 

a1x1 = u    (3) 

x1a2x2 = v   (4) 

x2
−1

a3 = w   (5) 

Solving (3) and (5) requires to decompose u and w into 
two elements whereas solving (4) requires to decompose v 
into three elements. (4) can be considered as a quadratic 
equation as it can be written as a2x2 = vx1 and the equations 
(3) and (5) are linear. It can be easily observed that solving 
(5) is trivial when compared to (4). The main difference in 
this new scheme w.r.t. other non – commutative based 
schemes is to solve quadratic relations which in the aspect of 
decomposition is referred to as Triple Decomposition 
Problem. 

However, attacking the system does not specifically 
mean attacking the triple decomposition problem. The 
security of the system comes into question even if we are 
able to retrieve an equivalent key from the public 
parameters. The security of the scheme would depend on a 
number of factors, the platform which we use and the 
choices of subsets. First we will see the choices of subsets 
which are advised to be avoided and finally we will consider 
the setting of braid groups as a platform to implement our 
key exchange. 

A. Cases to be avoided 
We will now discuss about some trivial cases in which 

the choices of subsets leaves the system vulnerable to 
attacks. 

Case 1 : If [X1, Y1] = 1, [X2, Y1] = 1, [X2, Y2] = 1, along 
with other invertible and commutative conditions 
mentioned earlier in the definition of our system. Then 
upvqwr gives the shared key. 

Proof:  

upvqwr=  a1x1b1y1x1
−1

a2x2y1
−1

b2y2x2
−1

a3y2
−1

b3 

= a1b1x1y1x1
−1

a2x2y1
−1

b2y2x2
−1

a3y2
−1

b3 

= a1b1y1a2x2y1
−1

b2y2x2
−1

a3y2
−1

b3 

= a1b1y1a2y1x2y1
−1

b2y2x2
−1

a3y2
−1

b3 

= a1b1a2x2b2y2x2
−1

a3y2
−1

b3 

= a1b1a2b2x2y2x2
−1

a3y2
−1

b3 

= a1b1a2b2a3b3 

 

Case 2 : If [A2, B1] = 1, [A3, B2] = 1, [A3, B1] = 1, 
along with other invertible and commutative conditions 
mentioned earlier in the definition of our system. Then 
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uvwpqr gives the shared key. 

Proof : SharedKey = a1b1a2b2a3b3 

= a1a2a3b1b2b3 

uvwpqr = a1x1x1
−1

a2x2x2
−1

a3b1y1y1
−1

b2y2y2
−1

b3 

= a1a2a3b1b2b3 

Hence, SharedKey = uvwpqr 

 

Case 3 : To ensure quadratic setting of (2), there 
should be many solutions to (2) as otherwise the solution 
to the simultaneous equations (2) and (3) will be unique 
which will weaken the system against brute force attacks. 

 

Case 4 : If [A2, B1] = 1 and [X2, B1] = 1, or [A3, B2] = 1 
and [A3, Y1] = 1, along with other invertible and 
commutative conditions mentioned earlier in the 
definition of our system. Then the security comes down to 
the complexity of decomposing an element into two. 

Proof : When [A2, B1] = 1, the shared key is 
a1a2b1b2a3b3. Multiplying u, v and p, q we get uv = a1a2x2 

and pq = b1b2y2. Let a1a2 = a , where a ∈ G. Now 

considering the commutative conditions [A2, B1] = 1, [X2, 
B1] = 1 & [A3, Y2] = 1 the shared key can be decomposed 
into apqa3r. The problem now comes down to 
decomposing uv into a and x2 and then finding a3 from the 

equation w = x2
−1

a3. Hence, in these setting of 

commutative conditions we were able to determine the 
shared key by decomposing an element into two which is 
no longer the Triple Decomposition problem but a simple 
decomposition problem. Similar proof can be given for 
the second remark in this case. 

 

Controlled division of generators of a braid group into 
sets could result in a system which satisfies the above 
requirements of commutativity conditions. Consider Gn, a 

braid group of size n where n − 1 = 3d for a positive 

integer d ≥ 2. 

A1 = Gn 

,X1 = <σ1, ..., σd−1  > B1 = <σd+1, ..., σn−1   > 

A2 = <σ1, ..., σd−1  > Y1 = <σd+1, ..., σn−1   > 

X2 = <σ1, ..., σ2d−1> B2 = <σ2d+1 , ..., σn−1> 

A3 = <σ1, ..., σ2d−1> Y2 = <σ2d+1 , ..., σn−1> 

B3 = n 

It can be easily observed that X1 is generated by 1
st
 d−1 

generators and so on. The condition (Case 3) that an 

equation of the type (the last one) x2
−1

a3 = w should have a 

large solution space is satisfied by X2 = A3 as x2 = x, a = xw 

is a solution for any x ∈ X2. 

The following observations prove that the Triple 
Decomposition problem is secure against linear algebra 
attacks. 

1. In the setting which uses Triple Decomposition 
problem, we have a combination of linear and quadratic 
equations. There is a unique solution which satisfies both the 
equations. Hence, not all the solutions of the linear 
equations lead to a valid shared key. 

2. We cannot reduce the system to positive braids. Or in 
other words when we try to reduce the system to positive 
braids, the corresponding subsets are not preserved in 

x1
−1

a2x2 = v. Hence, the matrix forms are destroyed. 

Conclusion 

We proposed a new way to achieve key exchange in a 
public key domain. The security of the new scheme relies on 
the triple decomposition problem in a non commutative 
group. We focused on braid groups as they have the required 
practical properties needed by the system. We analysed the 
scheme over a classical ElGamal protocol and presented a 
setting in which the scheme is resistant to linear algebra and 
length-based attacks. 

Further research is needed to establish a stronger assurity 
in the scheme and to determine certain parameters for 
practical uses. 
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