
 Proc. of The Sixth Intl. Conf. On Advances In Computing, Control And Networking - ACCN 2017
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-117-7 doi: 10.15224/ 978-1-63248-117-7-14

A Study on Security Issues Caused by Ad
Libraries in Smartphone Apps

Ming-Yang Su, Meng-Yuan Chang, and Ying-Tang Hsu

Abstract—Many app developers would cooperate

with ad networks by adding a procedural code (called

ad library or ad lib) from ad providers into the app.

The free apps will help them get into the market, and

the ad will increase their income. To make ad more

targeted at the needs of individual users, ad lib must

collect personal information, including age, gender,

income and something even more private, the habit of

network use, and the location of users. It would

automatically connect itself with the ad server to send

out the personal information while receiving the ad

reply from the ad server. Aside from pictures, it may

include JavaScript for malicious acts and require the

connection between the app and the third-party server

to download malicious apps and automatically install

and run them under the background. To make more

profits from ads, many app developers embed more

than one ad libs into an app, i.e., connecting to several

ad providers, so as to make the security problem ever

worse. Using the machine learning on the static

program analysis, this paper developed an anti-ad app

called Ad Pioneer. Users can adopt Ad Pioneer to check

the security of an app’s ad, so as to prevent personal

information leaking.

Keywords—Smartphone, Ad SDK (ad lib), Ad

Server, Ad Request, Ad Reply, Privacy, Permission,

Sensitive Function

I. Introduction

App ad is greatly different from browser ad, for

the ad lib of the former is compiled after being added

into the app. In other words, advertising has been

regarded as one of normal functions of the app in the

system. Hence, the ad lib can use the permission of

the whole app. As for the latter, browser and ad are

seen as different processes in the system and thus

have different permissions.

Android is an open and highly popular operating

system. In 2014, its software exceeded 1.4 million in

number [1]; in 2015 the quantity of the APPs on its

application software store Google Play surpassed that

on the APPLE App Store, which made it an operating

system with the largest number of apps in the world.

Many Android apps are free, but app developers

make profits through advertising. To make

advertising more targeted at the needs of individual

users, ad lib embedded into the app must collect some

personal information, including age, gender and

income. Many ad libs may break the permission to

collect private information about cell phone users and

their habits of network use or track their locations.

Without affecting users’ operation of the app, ad lib

automatically connects itself with the ad server and

send out the collected personal information through

the ad request packages. Meanwhile, it receives the

ad reply packages from the ad server. Apart from ad

pictures, it may include JavaScript and take some

actions malicious to users without any authorization,

such as collecting the information about the address

book, audios and image documents, sending short

message and emails, or steal the cookies of cell phone

users, so as to obtain the accounts and codes of users.

Ad reply may also request the connection between

the app and the third-party server to download

malicious apps and automatically install and run them

under the background.

The ad libs embedded into the app would obtain

contents from ad providers and display them on the

user interface of the app [2]. According to the latest

findings of the cooperation between Purdue

University and Microsoft [3], although the App

dependent on ads runs under the banner of “free”, it

costs power – the most important basis of smart

phones and even other electronic devices. According

to the report, about 75% of the power of the free apps

in the Android system is used on ad service, tracking

and uploading of information about users. In an

extreme situation, a free app alone may consume all

the power of a device within 90 minutes. Abhinav

Pathak, a researcher at Purdue University, used an

HTC cell phone equipped with Android 2.3 to test 5

popular apps in Android, including the famous Angry

Birds. In the test on Angry Bird, only 20% of the

power was used for running the game; 45%,

uploading the location of users in the GPS and

delivering relevant ads through the 3G network. Even

if the information transmission is finished, the 3G

network did not stop working; instead, it continued to

consume 28% of power. Additionally, power is not

consumed by App ads alone. In the test on the App

and the browser version of New York Times, both

consumed 15% of power to transmit the information

about users.

Ming-Yang Su

Department of Computer Science and Information Engineering,
Ming Chuan University,

Taiwan

Meng-Yuan Chang

Department of Computer Science and Information Engineering,
Ming Chuan University,

Taiwan

Ying-Tang Hsu

Department of Computer Science and Information Engineering,

Ming Chuan University,

Taiwan

62

 Proc. of The Sixth Intl. Conf. On Advances In Computing, Control And Networking - ACCN 2017
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-117-7 doi: 10.15224/ 978-1-63248-117-7-14

There are many famous Ad Networks, such as

Admob, Airpush, Appenda, LeadBolt, Moolah Media

and Startapp, as is shown in Figure 1 [3]. Different

Ad Networks have different ad libs, and there are

both beneficial and malicious ad libs. The most

trustworthy one is the ad lib of Admob, a network

advertiser acquired by Google. As a highly reliable

ad lib, it is also the most widely-used one in free

Apps. In contrast, the most criticized one is Airpush,

for the annoying ad lib delivers overwhelming ads in

the notice column of cell phones on an irregular basis.

Some ad libs are notorious for using too much

permission and delivering porn ads. Against such a

backdrop, the anti-ad software was created. It collects

the feature codes of the ad libs and detects them in

the downloaded Apps, working like a piece of

anti-virus software. A free App stores and retrieves

the information of two networks: on one hand, it

stores and retrieves the data about games or apps

from App developers; on the other, it collects the

information for ad from the ad server and uploads the

information about cell phones to ad providers [3].

Figure 1. Top 10 Ad Libs of the Free Apps in Android [3]

The delivery ad on the Android platform is a new

network ad. As its delivery does not stop with the

suspension of apps and ad may appear in the notice

column at any time, it is often regarded as spam. In

fact, the delivery ad also causes other negative

impacts, including the soaring expenses for mobile

data, the increase in power consumption, the

narrowing available space of cell phones, and the

vulnerability to more malicious apps. Pearce et al. [11]

changed the Android architecture and proposed a new

ad API, matching ad libs with corresponding

exclusive ad permissions. This method greatly

improved the control over the ad in the Android

system. However, the systematic effect can only be

achieved through the official re-writing the inner

architecture of the Android system and the consensus

with the whole advertise ecosystem. Consequently,

the method is not highly feasible. In Section 2, the

concept of the static program analysis of advertising

is introduced; Section 3 illustrates the architecture of

this paper as well as the results of the experiment; in

Section 4, a short conclusion is presented.

II. Program Analysis of
Advertising

According to Kumar and Singh [12], many ad

libs request excessive permission or use permission

without authorization. Some apps even sniff network

traffic to obtain the ad request packages which

involves several ad providers, so as to obtain the

personal information about users on an extensive

basis. This paper also focuses on how some notorious

ad libs transmit personal information to unknown

servers through the third-party connection. According

to Gao et al. [13], ad lib and app are compiled after

combination, so it is impossible to prevent ad lib

from using the permission without authorization. The

author has designed a system called PmDroid to

prevent the information obtained without permission

by ad lib from being sent to ad servers. PmDroid

shows the severity of the excessive permission of ad

libs on a graphic interface. To deepen the

understanding of ad lib, the author made 53 apps and

each app was embedded with a different ad lib. All

these apps did nothing but announced the permission

of all Android systems. The packaged traffic of all

the apps was recorded to get the information about

the abuse of permission of ad libs. As the apps did

nothing, all the traffic was consumed by the ad libs.

The author came to the conclusion that the abuse of

permission of ad libs is really serious.

Static program analysis means that an app is

analyzed when it is not being used [4]. The analysis

focuses on understanding app behaviors through

analyzing the original app codes or disassembly. But

in the actual analysis, actual implementation software

is used to improve the understanding of the results of

static program analysis. Starting with static program

analysis, Schmidt et al. [5] proposed to use readelf to

extract the function call list of the Executable and

Linking Format (ELF) archives and employ the

classification algorithm to classify the collected

samples, so as to detect malicious software. Apvrille

and Strazzere put forward another static program

analysis [6], where 39 signs like Java API transfer,

the existence of embedded executable documents,

code size and website were adopted. Each sign was

equipped with a weight, and the statistical calculation

would show which signs were most frequently used

in the app codes of the developers of malicious apps

for Android. Under the Android environment, the

subject of static program analysis is the Android

Application Package File (APK) [7]. The APK

structure comprises five parts: 1) the META-INF file,

2) the res file. 3) AndroidManifest.xml, 4) class.dex

and 5) resources.arsc. As far as the five parts are

concerned, Fuchs et al. [8] proposed to use

ScanDroid to collect the permission required by the

software and then find out if the software was

consistent with the permission according to the data

flow of the software. The problem of the method is

that it cannot detect the malicious software which

purposely bypasses the Android permission

mechanism. Our analysis, however, focuses on

class.dex. After obtaining the original app code

through the anti-compilation of the archive, we can

find out all sensitive function in the original codes for

the classification. For example:

 ActivityManager\;\-\>killBackgroundPr

ocesses: suspend the process

 TelephonyManager\;\-\>getDeviceId”:

collect the IMEI codes, phone numbers

and system versions of cell phones

 SmsReceiver\;\-\>abortBroadcast”:

63

 Proc. of The Sixth Intl. Conf. On Advances In Computing, Control And Networking - ACCN 2017
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-117-7 doi: 10.15224/ 978-1-63248-117-7-14

interrupt the receiving of short message

 Chmod: alter the document permission

 HttpClient\;\-\>execute: send a request

to the far-end server

 ContentResolver\;\-\>query: read the

information about contact persons and

short message

We collected many pieces of malicious software

as well as analyzed and summarized the behaviors of

a large number of malicious apps. Then, we found

out the sensitive functions that might be used in the

apps and adopted Weka [7] to establish a feature

model.

III. Architecture and
Experiment Data

First, we visited the website with the ranking of

ad providers [10] and selected the top 50 around the

world. The total share held by these ad providers is

95% of the market, so their reliability as the test case

was high. The data downloaded from apk download

or APK mirror APKPure were used for the Weka

model training. Then, all the archives were

anti-compiled and excerpted and divided into two

groups – the “ad files” and the “non-ad files”. Two

selection methods were adopted. The first one was

the preset-arrayed automatic scanning of the

self-made apps which worked according to the fixed

name of the ad files. The second one was the manual

selection and scanning which aimed to ensure the

accuracy and completeness of the data. There were

over ten thousand data in total. After the data were

added into the database, they were stored in arff files,

and the path column “attributes” was manually

changed into “String”. If “attributes” was “Nominal”,

many algorithm classifiers would be tried. With the

built-in string cutting function of Weka [9], this study

trained an evaluation model (strings were cut for a

higher accuracy). Three algorithms were analyzed in

the experiment, including Support Vector Machine

(SVM), ZeroR, and Naive Bayes. Finally, Navie

Bayes, the algorithm which had the best performance,

was adopted. The accuracy of the 10-fold

cross-validation could be up to 98.3665%.

Figure 2. Accuracy of Navie Bayes

Then, the Weka training model was added into the

malicious ad monitoring app (Ad Pioneer) developed

in this study. The system adopted the API and Weka

API provided by Android SDK, the open original

code resources in Github, the anti-compilation, as

well as the Weka model “bayes.model” from the

self-made ad database. The development was as

follows: 1) Made the appearance; 2) made the

plane-entering full-screen effect; 3) designed the

archive selection interface; 4) adopted Weka API to

establish Attribute-Relation File Format(arff); 5)

designed Attribute, Instance, and Value in arff; 6)

used bayes.model to conduct the predicted

experiment on the established arff; 7) Decompressed

apk; 8) adopted jaDX and dex2jar for the

anti-compilation; 9) added the names of the files into

arff and made the prediction; 10) made the sensitive

function analysis of the app codes after defining the

ad files; 11) analyzed the scores and informed users

of the damage to privacy. “Ad Pioneer” is shown in

Figures 3 and 4. It is an App created in the Android

Studio development environment. Currently, its

functions are as follows: browse the archives in cell

phones and monitor the APK archive; use the feature

model established in the special case to evaluate the

danger and recognize malicious ads; list the

malicious acts on the backstage.

Figure 3. Menu of Ad Pioneer

Figure 4. List of Detailed Results

64

 Proc. of The Sixth Intl. Conf. On Advances In Computing, Control And Networking - ACCN 2017
Copyright © Institute of Research Engineers and Doctors, USA .All rights reserved.

ISBN: 978-1-63248-117-7 doi: 10.15224/ 978-1-63248-117-7-14

IV. Conclusion

In this paper, static program analysis was adopted

to probe into the monitoring of the mainstream

malicious ads in the Android system. Weka and

diverse static program analyses were used to obtain

satisfactory results in the monitoring of malicious ads.

Aside from detecting malicious APPs with the

Google Play built in Android, users can also install

the models which can monitor features or adopt

anti-virus APPS which can detect some unknown

malicious software (such as MAB) to prevent the

problems causing the leakage of personal information

and abnormalities. As far as the current experiment is

concerned, Naive Bayes and the 10-fold

cross-validation can contribute to an accuracy of up

to 98.3665%.

Acknowledgment

This work was partially supported by the Ministry

of Science and Technology with contract MOST

104-2221-E-130-008 and 105-2221-E-130-004.

References

[1] NaoyaKajiwara, Shinichi Matsumoto,YuukiNishimoto,

Yoshiaki Hori, Kouichi Sakurai,.2014, “Detection of Privacy

SensitiveInformation Retrieval Using API Call
LoggingMechanism within Android Framework,” Journal of

Networks, Vol 9, No 11 (2014), 2905-2913,ov 2014.

[2] J Crussell, R Stevens, H Chen, Madfraud: Investigating ad

fraud in android applications, Proceedings of the 12th annual

international conference on Mobile systems, applications, and

services, Pages 123-134, June 16 - 19, 2014.
[3] http://blog.trendmicro.com.tw/?p=9022#more-9022

[4]Wikipedia.,2015,APK.(http://en.wikipedia.org/wiki/Android_ap

plication_package)
[5]Aubrey-Derrick Schmidt et al., “Static analysis of executables

for collaborative malware detection on Android,” Proceedings of

the IEEE International Conference on Communications, pp.
631-635, 2009.

[6] A. Apvrille and T. Strazzere, "Reducing the window of

opportunity for Android malware gotta catch 'em all," Journal in
Computer Virology, vol.8,pp.61-71,2012.

[7] Weka, http://www.cs.waikato.ac.nz/ml/weka/

[8] Adam P. Fuchs, AvikChaudhuri, and Jeffrey S.Foster. Technical
Report CS-TR-4991,Department of Computer Science,

University of Maryland, College Park, November 2009. 15.Wu

Zhou, Yajin Zhou, Xuxian Jiang,PengNing, "DroidMOSS:

Detecting Repackaged Smartphone Applications in Third-Party

Android Marketplaces," Proceedings of the 2nd ACM

Conference on Data and Application Security and Privacy
(CODASPY 2012), San Antonio, TX, February 2012.

[9]http://zh.wikipedia.org/wiki/%E6%94%AF%E6%8C%81%E5

%90%91%E9%87%8F%E6%9C%BA
[10] http://www.appbrain.com/stats/libraries/ad?list=top500

[11] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David

Wagner, “AdDroid: Privilege Separation for Applications and
Advertisers in Android,” Proceedings of the 7th ACM

Symposium on Information, Computer and Communications

Security, 2012.
[12] Pradeep Kumar and Maninder Singh, “Mobile Applications:

Analyzing Private Data Leakage Using Third Party
Connections,” in the IEEE Proceedings of International

Conference on Advances in Computing, Communications and

Informatics (ICACCI), pp. 57-62, 2015.
[13] Xing Gao, Dachuan Liu, Haining Wang, and Kun Sun,

“PmDroid: Permission Supervision for Android Advertising,” in

the IEEE Proceedings of the 34th Symposium on Reliable
Distributed Systems, pp.120-129, 2015.

Ming-Yang Su received his B.S. degree from the

Department of Computer Science and Information

Engineering of Tunghai University, Taiwan in 1989, and

received his M.S. and Ph.D. degrees from the same

department of the National Central University and National

Taiwan University in 1991 and 1997, respectively. He is an

IEEE member, and currently a professor of the Department

of Computer Science and Information Engineering at the

Ming Chuan University, Taoyuan, Taiwan. His research

interests include network security, intrusion

detection/prevention, malware detection, mobile ad hoc

networks, VoIP security and wireless sensor networks.

Meng-Yuan Chang is currently a student of the

Department of Computer Science and Information

Engineering of Ming Chuan University, Taoyuan, Taiwan.

His research interests are in the areas of network security,

and mobile phone security.

Ying-Tang Hsu is currently a student of the Department of

Computer Science and Information Engineering of Ming

Chuan University, Taoyuan, Taiwan. His research interests

are in the areas of intrusion detection/prevention, wireless

sensor networks and malware detection.

65

