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Abstract— A new pressure based implicit procedure to solve 

the Euler and Navier-Stokes equations is developed to predict 
transonic viscous and inviscid flows around the plunging airfoil 
with high resolution scheme. In this process,  nonorthogonal and 
non moving mesh with collocated finite volume formulation are 
used. In order to simulate plunging airfoil, oscillation of flow 
boundary condition is applied. The boundedness criteria for this 
procedure are determined from Normalized Variable Diagram 

(NVD) scheme. The procedure incorporates the k -ε eddy-

viscosity turbulence model. In the new algorithm,  the 
computation time is considerably reduced. This process  is tested 
for inviscid and turbulent transonic aerodynamic flows around 
plunging airfoil. The results are compared with other existing 
numerical solutions and with experiment data. The comparisons 
show that the resolution quality of the developed algorithm is 
considerable. 

Keywords— Plunging, Transonic, Inviscid, Viscous, Boundary 

condition 

 
I.  Introduction  

In the field of simulating moving boundary flow problems, 

different approaches are found in the literature of the art. 

Shankar and Ide [1]have presented an appropriate grid update 

procedure for small displacements of the structure where the 

speeds of the outer boundary points are taken to be zero and 

the grid speeds at any interior point are then obtained by 

interpolating the body value and the zero outer boundary value 

along a constant coordinate line. However, this method may 

result in severe grid distortions when the structure experiences 

large displacements. Goswami and Parpia [2]mentioned that 

local grid restructuring methods can be used when at each time 

step, the boundary movement is smaller than the minimum 

mesh size in the domain. Regarding the high cost of mesh 

insertion and deletion in the previous method Batina [3] 

introduced dynamic mesh approach. This method uses mesh 

smoothing instead of insertion and deletion of near boundary 

grids. The process of Mesh smoothing is implemented until a 

proper mesh quality, which is dependent on several criteria is 

achieved [4]. In order to attain a pattern for grid points to 

satisfy a set of smoothness and orthoganility constraints, 

Nakahashi and Deiwert [5] used  the concept of spring coupled 

with variation principles. Levine et al. [6]utilized the similar 

spring analogy to compute the new body conforming grid 

M.H. Djavareshkian Associate Prof. 

Ferdowsi University of Mashhad 

IRAN 

 
A.R. Faghihi MSc Student 

Ferdowsi University of Mashhad 
IRAN 

 

points. Guruswamy [7] introduced a dynamic algebraic grid 

generation scheme in which grid points are conformed to the 

deforming shapes of the structure. Lohner [8]proposed the use 

of the Arbitrary Lagrangian-Eulerian (ALE) formulation as a 

means to achieve a solver that canhandle moving frames. 

However the grid points in ALE formulation must be renewed 

even in the sheer rigid-body motion problems. Farhat and Lin 

[9]introduced a more economical approach for transient 

solution of the aeroelastic coupled problem with respect to 

multiple moving frames of reference.           

Other approaches for handling moving boundary problems are 

available. The field velocity method (Parameswaran and 

Baeder, [10], Singh and Baeder, [11] and[12], Sitaraman et al. 

[13], Zhan and Qian, [14] and[15]), which adopts the grid 

speed technique to simulate the velocity change of the flow 

field, has been applied successfully to calculate the gust 

response of the airfoil/wing(Harish and Alex [16]; Raveh; 

Raveh et al., [17] and [18], Yang et al., [19]. This method has 

shown to be suitable for computation of step change of airfoil. 

The method of conventional field velocity is usually used to 

calculate the indicial response by incorporating unsteady flow 

conditions via grid movement in CFD simulations 

(Parameswaran and Baeder, [20](Singh and Baeder, [21]). The 

main privilege of this method is direct calculation of 

aerodynamic responses to step changes in flow conditions. An 

impulsive change in the angle-of-attack can be considered as 

an impulsive superposition of a uniform velocity field to the 

free stream. The magnitude of the indicial change for the angle 

of attack is used for calculation of the magnitude of normal 

velocity. In this method, the necessity of uniform distribution 

of time step over the entire flow domain is guaranteed. In 

addition, the airfoil is not made to pitch. Hence, the influence 

of pure angle-of-attack and pitch rate are decoupled 

efficiently. A similar methodology for simulating responses of 

an airfoil to step changes in pitch rate and interaction with 

vertical gusts exists. Moreover, the field velocity method is 

also applied for prediction of the effects of the trailed vortex 

wake from the other rotor blades in helicopters, compressors 

or other turbo machineries.  A time dependence study 

illustrates that a smooth and accurate solution in time requires 

the consistent evaluation of time metrics in order to satisfy the 

geometric constitutive law(Sitaraman et al., [22]). 
The objective of the present work is to compute unsteady 

transonic inviscid and viscous flow fields  over a pitching 
NACA0012 airfoil at various angles of the attack. A pressure 
based implicit procedure to solve the Euler and Navier-Stokes 
equations is developed to predict flows around the pitching 
airfoil with high resolution scheme. In this process,  
nonorthogonal and non moving mesh with collocated finite 
volume formulation are used. In order to simulate plunging 
airfoil, oscillation of flow boundary condition is applied. The 
boundedness criteria for this procedure are determined from 
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Normalized Variable Diagram (NVD) scheme. The procedure 

incorporates the k -ε eddy-viscosity turbulence model. The 

algorithm is tested for inviscid and turbulent transonic 
aerodynamic flows around plunging airfoil. The results are 
compared with other existing numerical solutions and with 
experiment data. The comparisons show that the resolution 
quality of the developed algorithm is considerable. 

 

II. Governing equations and discretization 

The basic equations, which describe conservation of mass, 

momentum and scalar quantities, can be expressed in 

Cartesian tensor form as: 
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The stress tensor and scalar flux vector are usually expressed 

in terms of basic dependent variable. The stress tensor for a 

Newtonian fluid is 
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The scalar flux vector usually given by the Fourier-type law is 
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Turbulence is accounted for by adopting k   turbulence 

model. The governing equations for these quantities are 
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The turbulent viscosity and diffusivity coefficients are defined 

by 
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and the generation term G in eqs. (6) and (7)is defined by  
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The term 
compD and diff are additional contributions to the 

standard k  model often introduced to account for the 

effects of compressibility. In this work, the models proposed 

by (Yang et al., [23]). are adopted, namely, 

(11)  9 1
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(12)  0diff   

The latter being appropriate for high Reynolds number flows, 

as it is the case here. The values of the turbulence model 

coefficients used in the present work are given in  

 

Table 2(Yang et al., [23]). 

The discretization of the above differential equations is carried 

out using a finite-volume approach. First, the solution domain 

is divided into a finite number of discrete volumes or cells, 

where all variables are stored at their geometric centers (see 

e.g. Fig. 1). The equations are then integrated over all the 

control volumes by using the Gaussian theorem. The 

development of the discrete expressions to be presented is 

effected with reference to only one face of the control volume, 

namely, e, for the sake of brevity. 

 For any variable  (which may now also stand for the 

velocity components), the result of the integration yields 
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Where I(S) are the combined cell-face convection I
C 

and 

diffusion I
D 

fluxes. The diffusion flux is approximated by 

central differences and can be written for cell-facee of the 

control volume in Fig.1 as an example as:  
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Where 
eS stands for cross derivative arising from mesh 

nonorthogonality. The discretization of the convective flux, 

however, requires special attention and is the subject of the 

various schemes developed. A representation of the convective 

flux for cell-face e is: 

(15)  
eeee

c
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The value of the dependent variable e is not known and 

should be estimated using an interpolation procedure, from the 

values at neighboring grid points. e is determined by the SBIC 

scheme(Djavareshkian [24]), that it is based on the NVD 

technique, used for interpolation from the nodes E, P and W. 

The expression can be written as 
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The limits on the select each value of K  could be determined 

in the following way. Obviously the lower limit is to 

keep 0K , which would represent switching between 

upwind and central differencing. This should not be favored 

because; it is essential to avoid the abrupt switching between 

the schemes in order to achieve the converged solution. The 

upper limit of K  is 0.5, since it represents the constant 

gradient and there is no need to use anything else than central 

differencing in that case. The value of K should be kept as low 

as possible in order to achieve the maximum resolution of the 

scheme.  

According to Eq. (17), if P
~

(or C
~

normalized variable at the 

central node) does not belong to [0,1], the space discretization 

is first order, otherwise the SBIC scheme has second order 

accuracy from point of view space discretization. The details 

of how the interpolation is made is dealt with([24]); it suffices 

to say that the discretized equations resulting from each 

approximations take the form:  

(19) 
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Where A(s) are the convection-diffusion coefficients.The term 
'S 
 in Eq.0contains quantities arising from non-orthogonality, 

numerical dissipation terms, external sources, deferred 

correction terms, and ( / ) Pt    of the old time-

step/iteration level. For the momentum equations it is easy to 

separate out the pressure-gradient source from the convected 

momentum fluxes.  

 

III. Solution Algorithm 

Most contemporary pressure-based methods employ a 

sequential iteration technique in which the different 

conservation equations are solved one after another. The 

common approach taken in enforcing continuity is by 

combining the equation for continuity with those of 

momentum to derive an equation for pressure or pressure-

correction. The PISO [25] algorithm is used in this work.   

 

IV.   New Time Advancement Algorithm 

In this research, the new time advancement algorithm, is 

utilized an internal and external loop for calculation(Fig 2).  

 

V.  Boundary Conditions 

At the inlet of the domain, only three of the four variables 

need to be prescribed: the total temperature, the angle of 

attack, and the total pressure. The pressure is obtained by 

zeroth order extrapolation from interior points. At outlet, the 

pressure is fixed. Slip boundary conditions are used on the 

lower and upper walls. In the case of viscous flow, the non-

slip condition is applied at the airfoil surfaces. To account for 

the steep variations in turbulent boundary layers near solid 

walls, wall functions, which define the velocity profile in the 

vicinity of no-slip boundaries, are employed.  

 

VI.  Results and discussion 

In this section, the results of the viscous flows over a 

plungingNACA0012 airfoil are indicated. The simulations are 

performed at a higher Reynolds number. In particular, we aim 

to validate the simulation with existing numerical results of a 

plunging airfoil, and study the lift characteristics of a plunging 

airfoil. The steady state solutions at 1° angle of attack are used 

as initial conditions for time-marching calculations. Error! 

Reference source not found.. provides an illustration of pure-

plunge motion for an airfoil with a free stream Mach number 

of 0.8 and  angle of attack 1°. The parameters of motion and 

flow field are described in Table 1. The heaving velocity of 

the sinusoidal plunging motion is given as:    
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The significant point in simulation heaving airfoil with 

oscillation boundary condition considers a lag phase  t . 

Eq.18 has been non-dimensionalized by the free stream speed 

of sound a .The free stream velocities for unsteady 

computations are set to uinlet=U∞ and vinlet=u∞sin(α(t)).  A H-

type mesh is generated to model the airfoil and the 

surrounding flow. The schematic of this grid which used in the 

present simulation is shown in Fig. 4. The grid dependence 

test for Navier-Stokes Equation on the NACA0012 airfoil at 

M∞= 0.8, α= 1˚ is indicated in Fig.5. Three different mesh 

sizes were considered: 27680, 57950 and 115960 cells and 
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each simulation emerged from its fully converged solution. 

These comparisons show that the solutions using oscillating 

boundary condition method has good prediction. 

The computed variation of the lift coefficient versus angle of 

attack for viscous flows during the third cycle is compared 

with that Lin [26] and Uzun [27] and in Error! Reference 

source not found.. For presented viscous case, the turbulence 

quantities were specified at inlet to correspond to 0.008 

turbulence intensity and a dissipation length scale of 10% of 

the airfoil chord. The value of K  in SBIC scheme for the case 

of validation in fig. 6 is 0.05. Fig. 6 shows the computed 

variation of lift coefficient versus angle of attack for viscous 

case which is in close agreement with published results. Uzun 

[27] used dynamic mesh with a parallel algorithm for the 

solution of unsteady Euler equation on unstructured 

reformatting grids while in this study non moving mesh with 

oscillation of flow boundary condition is applied. Lin used 

multi reference frame for simulation of heaving motions. This 

comparison shows the resolution of these methods is 

considerable. But the present method is simple and has low 

cost for calculation, on the other hand, the dynamic mesh and 

multi references of frame method are time consuming and 

very complicated to development. Table 3 indicates CPU 

Time comparison for different algorithms. The numbers of 

iteration to satisfy convergence criteria for the external loops 

of algorithms (a),(b) and (c) are approximately 500,0 and 2-3 

respectively and for internal loops of these algorithms are 

about 0, 20-30 and 3-5 respectively. As a result, the two 

algorithms (a) and (b) are time consuming and CPU time for 

new method is considerably decreased. 

 

 

VII.  Conclusions 

A pressure based implicit procedure to solve the Euler and 

Navier-Stokes equations is developed to predict transonic 

viscous and inviscid flows around the plunging airfoil with 

high resolution scheme. In order to simulate pitching airfoil, 

oscillation of flow boundary condition is applied. The 

boundedness criteria for this procedure are determined from 

Normalized Variable Diagram (NVD) scheme. The main 

findings can be summarized as follows: 1- The plunging 

airfoil simulation with the oscillation of flow boundary 

condition with fix grid is very simple and has low cost. 2-The 

grid dependence test with high resolution scheme indicates 

that an acceptable solution can be obtained even on fairly 

coarse 3-the agreement between numerical and experimental 

data is considerable. 4-The CPU time for new method 

considerably reduce. 
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Fig.1. Finite volume and storage arrangement 

 
Table 1 Pure plunging motion parameters 

 
κ M∞ c 

0.2 0.8 1.0 
 

 

 

Table 2 Values of emperical coefficients in the standard k-ε 
turbulence model 

C1 C2 Cμ σk σε 

1.44 1.92 0.09 1.0 1.3 
 

 

Table 3. CPU Time comparison for different algorithms 
 

 
Iterative 

Algorithm 

Non-Iterative 

Algorithm 

New 

Algorithm 

Internal 

Loop No. 
- 20-30 3-5 

External 
Loop No. 

500 - 2-3 

CPU Time 
(min) 

5000 2000 180 

 
 

Fig. 2 Different Flowcharts for Time advancement 
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Figure 2 Pure Plunge Motion definition, αm=1°      

 
 

Fig.4. Part of the H Grid 

 
Figure 3  Grid dependency results forNACA0012, M∞= 0.8, α=1° 

 

Figure 6 Lift coefficient distribution for Pure Plunging Motion, M=0.8, κ=0.2, 

:NACA0012 

 
 


