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Adaptive Humanoid Robot Arm Motion Generation 
by Evolved Neural Controllers 

 
[ Zulkifli Mohamed, Marsel Mano, Mitsuki Kitani & Genci Capi ] 

 
Abstract—In this paper, we present a new method for 

humanoid robot arm motion planning satisfying multiple 
constraints. In our method, the humanoid robot arm motion 
generation is formulated as an optimization problem. Four 
different constraints, which cover a wide range of humanoid 
robot tasks, are considered: minimum time, minimum distance, 
robot hand acceleration and constant joint angular velocity. 
Results show that arm motions have different characteristics. In 
order to further verify the performance of humanoid robot arm 
motions, they are transferred in humanoid robot mobile platform. 

Keywords— Humanoid mobile robot, motion planning, neural 
networks, genetic algorithms 

I.  Introduction 
Humanoid robots are expected to perform in everyday life 

environments. Therefore, they have to perform a wide range of 
tasks, such as picking an object and giving it to the human, 
removing an unnecessary object etc. The wide range of robot 
task requires different robot motion strategies. For example, 
the speed of moving the hand to the glass of water, is usually 
higher then moving the hand with the glass of water. In 
addition, because there are an infinite number of trajectories 
connecting the robot hand position with the goal location, the 
robot has to select the best trajectory and speed in order to 
complete the task successfully. 

A lot of work has been done on humanoid robot arm 
motion generation. Flash and Hogan (1985) [1] had proposed 
minimum hand jerk criteria, Rosenbaum et al. (1995) [2] 
proposed minimum angle jerk criteria and minimum torque 
change criterion introduced by Uno et al. (1989) [3], where 
control objects are the joint links plan in an intrinsic dynamic- 
mechanical space. Nakano et al. (1999) [4] had proposed 
minimum commanded torque change criterion and using 
representation of motor commands controlling the muscles.  
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Wada et al. (2001) [5] had proven that the minimum 
commanded torque change is the closest to human trajectories. 
In other studies, Vahrenkamp et al. (2008) [6] suggested 
Rapid-Exploring Random Trees (RRTs) which can adapt the 
number of degree of freedom used in robot motion thus 
improving the performance and quality of the trajectories. The 
numbers of degree of freedom used are optimized using RRT. 
In an eight degree of freedom robot, RRT determines the 
optimum number of joints needed to complete the task.  

Ang et al. (2009) [7] proposed a minimum time motion 
planning of robot arm using Pareto based multi-objective Bees 
Algorithm for a SCARA robot. Four different operators are 
used to optimize the cubic splines trajectories thus minimizing 
the travelling time of the robot which are discrete 
recombination, intermediate recombination, line 
recombination and path redistribution and relaxation. 
However, most of the previous works are focused on 
understanding human arm motion generation criteria. 

In our work, we propose a humanoid robot arm motion 
generation method based on four different criteria. The four 
criteria are minimum time, minimum distance, robot hand 
acceleration and constant joint angular velocity. In our method 
we evolved a neural network that generates the best robot 
motion for each objective function. These four criteria cover a 
wide range of robot motion required during everyday life 
robot tasks. Therefore, the selection of the best criteria to 
generate the trajectory is based on the task the robot has to 
perform.  

Another advantage of our method is that we employ a 
single neural controller for each objective function to generate 
the robot arm motion in a wide range of initial and goal 
location. These different criteria will make the robot more 
intelligent when choosing the best objective function for the 
given task. In addition, a new mobile humanoid robot platform 
has been developed to verify the performance. The robot 
composed by the upper part body and a mobile platform for 
navigation.  

The paper is organized as follows. In section II the mobile 
humanoid robot specification are presented.  The robot arm 
motion generation is discussed in section III. In section IV and 
section V, the neural controller and the evolution of neural 
controllers are explained. The simulation and experimental 
results are provided in section VI. In the last section, we give 
conclusions and future works. 
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II. Mobile Humanoid Robot 
The mobile humanoid robot has been developed in our lab 

is shown in Fig. 1. The key performance specifications of the 
mobile humanoid robot are: 

 Arm length – 54 cm 

 Total height – 134 cm 

 Maximum moving speed 1 m/s 

In general, the developed robot has fourteen degree of 
freedom, five degree of freedom on each arm, two hands and 
two degree of freedom head. The humanoid robot is placed on 
a moving platform to increase its mobility. The camera and a 
laser range sensor are used for safe robot navigation. The 
shoulder, upper arm and lower arm are activated by three DC 
motors. Three servos are used for each hand for object 
grasping and manipulation. Two web cameras are used for 
mobile platform motion and object recognition. The detail 
explanation of the inverse kinematics and mechatronic design 
are presented in [8]. 

III. Robot Arm Motion Generation 
Picking and placing, removing, pushing, etc. in all these 

tasks the humanoid robot trajectory and speed must be 
carefully selected in order to complete the task successfully. 
Therefore, in each stage of task performance, the main 
problem is what trajectory and how the moving speed must 
change connecting the robot hand and goal positions.  

The humanoid robot has to move the hand (object) from 
the initial to the goal position, which are connected with an 
infinite number of trajectories and motion velocities. In order 
to find the optimal trajectories, we have developed a robot arm 
simulator (Fig. 2(a)), which replicates the motion of the real 
robot (Fig. 2(b)).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  The developed mobile humanoid robot 

 

IV. Neural Controller  
Neural networks (NN) are mathematical model that is 

inspired by the biological neural networks. It is a set of 
algorithms for optimization and consists of links, 
interconnected state variables, weight values associated with 
each links and a transfer function. Feedforward neural 
networks are the most widely used in many practical 
applications. It has been chosen for its simplicity and 
robustness compare to backpropagation neural networks which 
has some drawback if the complexity of the data is increasing 
[9].  

In our work, we consider a single hidden layer feedforward 
neural network (FFNN), as shown in Fig. 3. The FFNN 
receives three inputs: the difference between the robot hand 
and goal positions coordinate in x, y and z axis. The inverse 
kinematics, based on potentiometer readings, is utilized to 
determine the current position of the robot hand. In simulated 
environment, the goal position is pre-determined while in real 
situations is generated based on the image processing. The 
output units directly control the 3 dc motors used to move the 
shoulder, upper arm and lower arm. The output units use a 
sigmoid activation function where 0 to 0.5 is for one motor 
moving direction and 0.5 to 1 for the opposite direction. The 
weight connections of the neural controller are trained using 
genetic algorithm. 

 
 

 

 

 

 

 

 

 

Figure 2.  (a) Simulation setup (b) experimental setup 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Feedforward neural networks 
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V. Evolution of Neural Controllers 

A. Genetic Algorithm 
Genetic algorithms (GAs) are adaptive heuristics and 

global searching technique based on the principle of evolution 
[10]. The two basic processes of GAs are inheritance and 
competition toward better region of search space.  

In our work, we used an extended multi-population genetic 
algorithm, where the subpopulations apply different 
evolutionary strategies [11]. In addition, the subpopulations 
compete and cooperate among each other. The GA parameters 
used are shown in Table 1. 

TABLE I.  SUMMARY OF GENETIC ALGORITHM PARAMETERS 

Number of Subpopulation 3 

Number of Individuals 450, 450, 300 

Maximum Generations 80 

 

B. Fitness Functions 

1) Minimum Time  
The first criterion is the minimum time taken for the robot 

hand to move from its initial position to the goal position. This 
objective function is very significant in everyday life 
environments where the robot hand has to move freely from 
one point to the other, or move small rigid objects. In our 
system, the sampling time to process the sensors data and send 
the motor command is 0.03 second. Therefore, the objective 
function is to minimize the number of step for the robot to 
reach the goal position. 

fnumber of steps  

2) Minimum Distance 
For a specific task, such as drawing a straight line, 

arranging books and pushing an object, the trajectory 
connecting the initial and goal positions must be the shortest 
one. This is the reason minimum distance in selected to be one 
of the objective functions. The minimum distance objective 
function is as follows:  

 fabs (rti – sd) 

where rti is the summation of robot hand moving distance in 
each time step and sd is the shortest distance of the robot hand 
from its initial position to the goal.  

3) Robot Hand Acceleration 
If the object is not rigid, such as a cup of coffee, it will be 

better to move with minimum acceleration. The robot hand 
will have a gradually increasing velocity from the starting 

position and gradually decreasing velocity toward the goal 
position. In this case the total acceleration of the robot hand is 
minimized to have a constant velocity. Two penalty functions 
are also implemented in order for the robot to have a gradually 
deceleration before reaching the goal position and the number 
of velocity change for a smooth motion throughout the 
trajectories. Therefore the minimum acceleration objective 
function is as follows: 

 fahand + (vhand_end * w) + nvc 

where ahand is the summation of robot hand acceleration in 
each time step, vhand_end is the robot hand velocity when it 
approaches the goal position, w is the weight function and nvc 
is number of velocity changes. The number of velocity 
changes is very important in order to minimize the rapid 
changes of the robot hand velocity in each time step. The 
weight function (w) is used to adjust the priority between a-
hand and vhand_end. In our implementation the value of w used is 
100. 

4) Constant Joint Angular Velocity 
Another way to minimize the change in hand moving 

velocity is by minimizing the joint angular acceleration. 
Therefore, the following fitness function is also considered:   

  fα +  α +  α 

where α, α and α, is the robot angular acceleration for 
shoulder, upper arm and lower arm respectively. 

VI. Results 

A. Simulation Results 
The performance of the best neural controller generated for 

each objective function is shown in Fig. 4. Fig. 4(a) shows that 
minimum time neural controller reached the target position 
very fast (2.28 second). However, the hand acceleration (Fig. 
4(b) is really high, making it not suitable for tasks such as 
moving a glass of water. An interesting result is that the 
minimum time and minimum distance trajectories are very 
different. The minimum time neural controller reached the 
goal position following the longest trajectory. Because the 
change in the hand velocity is included as a penalty function in 
minimum distance and minimum angular acceleration, Fig. 
4(c) shows that there is not too much change in the fitness 
with minimum acceleration of the robot hand. The total 
velocity for the whole trajectory is 488.91 cm/s. The 
performance of constant joint angular velocity criterion is 
slightly lower with 538.45 cm/s. These simulations results 
show that all four criteria perform accordingly to their 
objective functions. 
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Fig. 5(a) and Fig. 5(b) shows the robot hand trajectories 
and velocity profile for each objective function. From the 
velocity profile, minimum step criterion has the lowest 
stability in the motion due to high velocity within 1 second 
from its initial position. Other three criteria had a low initial 
velocity, which increases gradually. The minimum 
acceleration of the robot hand generated the robot motion 
which reaches the goal position with a small velocity 
compared to other objective function.  

These objective functions have their own advantages and 
disadvantages over each other. If the robot hand need to move 
fast, the minimum time is best solution, for stability, robot 
hand acceleration and constant joint angular velocity can be 
used. For high accuracy, shortest distance will be the best 
objective functions. These results will be used in the next step 
of this research by implementing these criteria  as the multi 
objective functions of the robot and it will choose the best 
objective function for a given command or task. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  (a) Time to the goal (b) total trajectory distance (c) total velocity 

 

 

 

 

 

 
 
 

Figure 5.  Robot hand (a) trajectory (b) velocity 
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Figure 6.  Video capture of the experiment 

B. Experimental Results 
The video capture of the experiment with the humanoid 

mobile robot is shown in Fig. 6. The robot has to place the 
bottle of water on the table. Because its initial position is far 
from the table, first the robot utilizes the laser and camera 
sensors data to reach the table. The robot arm motion is 
generated by four optimal neural controllers in order to 
compare the performance. The same motion is also repeated 
without holding the bottle to compare the results.  

The time needed to reach the table is shown in Fig. 7(a) for 
no bottle motion and Fig. 7(b) with the bottle motion. In 
simulation the minimum time taken was 2.28 second, while in 
the real robot it took 2.425 second no bottle and slightly 
different (2.38 second) with the bottle. The same results are 
obtained also for the other three criteria. The performance of 
the robot manipulating the bottle is comparable with the 
simulation results.  

The comparison between the simulation and two 
experimental setups (with and without bottle) are shown in 
Fig. 8. In simulation, the external conditions are not 
considered such as joint friction, mechanical gear backlashes, 
motor gearhead backlashes, gravitational effect, mechanical 
design and the movement of the water inside the bottle. In the 
experiment, these factors are affecting the performance of the 
robot. In terms of time taken, there are small differences for all 
objective functions. It can be seen that the motion is slightly 
faster while holding the bottle due to higher gravitational 
force.  

These external factors affects the performance of the robot, 
as shown in Fig. 9. All three angles  of the right hand are 
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measured and compared. In simulation, the trajectory and the 
angle movement of each joint are very smooth. Although the 
performance of the robot is not as good as the simulations 
while holding the bottle, the robot follows nearly the same 
trajectory generated in the simulated environment. 

VII. Conclusion 
This paper proposed four different criteria for robot arm 

motion generation. We evolved one optimal neural controller 
for each fitness function by using the genetic algorithm. The 
advantage of the proposed algorithm is that the robot can 
generate the hand motion by the best neural controller based 
on the task it has to complete. In addition, the same neural 
controller can be employed to generate to robot hand motion 
for different initial and goal positions. The simulation results 
were also tested in real robot hardware, resulting in a good 
performance.  

In the future, we plan to employ multi-objective 
evolutionary algorithm for evolution of neural controllers. In 
addition, both arm motion generation will be considered. 

 

 

 

 

 

 

 

Figure 7.  Time to the goal (a) without load (b) with load 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.  Comparison between objective functions 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.  Comparison between objective functions for simulation and 
experiment (with load) (a) θ1 (b) θ2 (c) θ3 
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