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Abstract—: In this paper we discuss the effects of combined
convection flow of a viscous incompressible fluid past an infinite
vertical porous plate embedded with highly porous medium with
periodic permeability under constant heat flux in presence of slip
boundary conditions for velocity. The velocity and temperature
are obtained analytically and their behaviour for different
variations in the governing parameters are shown graphically
and discuss numerically.The skin friction and Nusselt number
are also evolved analytically and tabulated numerically for
variations in the said parameters .
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L INTRODUCTION

In the recent years flow of a viscous liquid through a
porous medium has attracted the attention of a number of
scholars because of its possible applications in many branches
of science and technology like petroleum industry, seepage of
water in river beds etc. In view of these applications, a series
of investigations have been made by Raptis (1983), Reptis and
Perdikis (1985) have studied unsteady flow problems through
a highly porous medium over infinite porous plate. In all the
studies mentioned above the permeability of porous medium
was assumed to be constant. Taking permeability variations
into consideration Taneja and Jain (2002) have studied the
heat and mass transfer flow with radiation in two dimensional
flow.

Problems of constant heat flux have attracted the attention
of fewer research workers. Singh and Jain (1993), Maharshi
and Tak (2002) and some others have discussed the effects of
constant heat flux. Recently Sarangi and Jose (2004) have also
studied flow through a porous medium on a vertical plate with
constant heat flux. All above investigations are for two
dimensional flow problems. However, when the variations in
permeability is transverse to the flow, the flow is essentially
three dimensional. The problem of such a transverse effects
was first considered by Gersten and Gross (1974). Acharya
and Padhya (1983) investigated the free convection and mass
transfer flow of a viscous fluid past a vertical porous plate
with constant suction and spanwise periodic varying plate
temperature. Singh and Rana (1992), Ahamed and Sharma
(1997) have studied the three dimensional viscous flow and
heat transfer along a porous plate when sinusoidal transversal

suction at the wall is applied. Recently Harmindar S. Takhar
(2007), Singh and Sharma (2002), K.D. Singh Jr. Dr., Rakesh
Sharma and Khem Chand (2000) have studied three
dimensional viscous flow and heat transfer along porous plate
with periodic permeability of the porous medium.

The studied reported herein analyzes the effects of
transverse periodic variations of the permeability under
constant heat flux on three dimensional combined convective
flow on a moving vertical plate in presence of slip flow
regime. Solutions for velocity, temperature, skin friction and
rate of heat transfer are analyzed for different variations in the
governing parameters entered in the problem. It is being
observed that increase in slip parameter decreases skin friction
in the direction of x (T,).

II. FORMULATION OF THE PROBLEM

We consider a flow embedded with highly porous medium
of a viscous incompressible fluid past an infinite plate with
periodic permeability under constant heat flux in a slip flow
regime. The plate lying vertically in x* - z* plane and y* axis
is normal to it. The bounded plate is moving with velocity U,
and moreover, free stream velocity of the flow is also assumed
as Ujy. The permeability of porous medium is taken as
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where K; is mean permeability of medium, { is wave

length of permeability distribution and € is amplitude of
permeability variations. Due to such permeability variations
the problem is three dimensional.

Let u*, v*, w* be the velocity components in x*, y* and z*
directions respectively and T* be the temperature, the
equations governing the flow in dimensional form are
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using these non dimensional quantities in equations (2) to (6),
equations reduce to
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with the boundary conditions
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y Doxu = I, w =0,P =P , T =0 . ..(13)
where
Gr = M (Grashoff number),
xU;
Re = Uiof (Reynolds number),
14
Pr = 'U_Cp (Prandtl number),
K
K, i
K, = 7 (Permeability parameter).

III.  SOLUTION OF THE PROBLEM

In order to solve the problem, we assume the solutions of
the following form because the amplitude & (<< 1) of the
permeability variation is very small ,so the solution in the
neighbourhood of the plate in the form

f(y,z) =f,(y)+ € £, (y,2) + e’ f,(y,2)+... (14

where f stands for u, v, w, p and 6. When € = 0 equations (8)
to (12) reduce to two dimensional free convection flow with
constant suction at the plate, and given by
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The solutions of the equations (15) to (19) are given as:

u,=C,e™™
1
T, = P
=—a, w,=0, P,=P..
When € # 0, substituting equation (14) into the equations
(8) to (12) and comparing the like powers of € and neglecting
higher powers of €, we get the following equations
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y—eoru, =0, w, =0, P, =0,T1 =0

These are the partial differential equations which describe
the three-dimensional flow through a porous medium. For
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solution, we shall first consider equations (22), (24) and (25)
being independent of the main flow and the temperature field.

Let us assume v, w; and p; as of the form

v, (y,z)==v, (y) cosTz ...(28)
0

w (y.2) = L% Ginmz ...(29)
T d

p, (y.2) =p, (y) coswz. ...(30)

Equations (28) and (29) are chosen so that the equations of
continuity (22) is satisfied. Substituting (28) and (29) in
equations (24) and (25), we get the following equations
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On solving equations (31) and (32) under the boundary
conditions (33), we get
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For the main flow and the temperature field solution, we
assume u; and T, as

u,(y,;z) = u,(y)cosrwz, ...(37
T, (y,2) T,(y)coswrz. ...(38)

By substituting equations (37) and (38) in (23) and (26),
we get
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On solving equations (39) and (40) using boundary
conditions (41), we get the following results
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IV. SKIN FRICTION AND NUSSELT NUMBER

After obtaining velocity field and temperature field, we
now discuss the x and z components of skin friction at the
wall and the Nusselt number as:

7, (skin friction in x - direction)
. 1 {8u0 du,,

>

x — +£
dy dy

T OUV  Re

Ccos ﬂZi|
y=0

7, (skin friction in z - direction)
T, 1] ow, .
= =—I|¢ sinrz
PUV  Re dy
and the Nusselt number is
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s
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where values of constants are given in Appendix.

V.  DISCUSSION AND CONCLUSION

In order to understand the solution physically, numerical
calculations have been made for the velocity distribution,
temperature distribution, x and z components of skin friction
and the Nusselt in presence of different parameters viz.
Permeability parameters (Ky), slip flow parameter (h,), suction
parameter (o), Grashoff number (Gr), Reynolds number (Re),
we have chosen air as a fluid (Pr = 0.71), fixing € = 0.2 and z
=1/4.
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In figure 1, velocity distribution is plotted against y on
different values of Re, o, h;, Ky and Gr. From the figure we
observe that increase in Re, h;, Gr and K, increases the
velocity of the fluid while increase in suction parameter o
decreases the velocity of the fluid. It is further seen that
increase in K, increases the pore space in the medium and
hence increases the flow velocity. In the way increases in slip
velocity at the plate adds some additional velocity to the flow.
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Figure 1. Velocity distribution u plotted against y for different values of
Re, 0, h;, Ko and Gr.

Temperature distribution is plotted against y in figure 2 for
fixed values of Pr, € and z. We observe that temperature of
the fluid increases with the increase of Re, and decreases with
the increase of K and o.
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Y —
Figure 2. Temperature distribution T plotted against y for different
values of Re, a and h;.

In figures 3 skin friction in the directions of x (t,) and
figures 4 skin friction in the directions of z (t,) are plotted
against Re respectively. From figure 3 it is observed that
increase in h;, o and K, decreases T,, while increase in Gr
increases T,. Moreover from figure 4, we noted that increase in
o and K increases T,.
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Nusselt number (Nu) is plotted against Re on different
values of o and KO in figure 5. It is interesting to observed
that for the case of constant heat flux at the plate, Nusselt
number increases with both the parameters o and KO.
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Figure 5. Nussult number (Nu) plotted against Re for different values of
Ko and a.
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VI. APPENDIX
1 Rea Re’a?
1= 5 m,
a.Pr
c _A+haPrRe) . Rea ezaz
2 s
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2 Z
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aPr Re o’ Pr’Re? Rea e2 [ 1
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Re’a’ 2 Rea Re’a’
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R C
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D. = m, c,7
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D. = A, maPrRe

8
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0
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m, C, (7 —m,)

D, = R
m; -Ream, -| 7* +L
KO
D, = (r-m,)A, aPrRe 1 ’
{az Pr’ Re’ —a’ PrRe’ —(7[2 +]}
KU
D, = S 1 D, = o
Ko{mf—Re am, —[;zz +—J} Ko{of P’ R’ —’PrRe’ —(;zz +—J}
K, K
C, = {GRe*[D,(1+h,m,)—A,D,(1+h,m, +h,&Pr Re)

[10]

[11]

[12]

[13]

+A,D,(I+ hz+haPrRe)+ A,D,(I+haPrRe)]-A;D;(1+hz+hm,)

+A; D (I+hz+haPrRe)+A,D,(1+ hm, +hm,)

—-A,Dy(1+ hm, +h,@PrRe)—A,D,(1+hm,)+A,D,(1+h,a PrRe)]
+D,;(1+ hm;)- D, (1+@PrReh,)}/(1+hm,)
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