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Abstract—: In this paper we discuss the effects of  combined 
convection flow of a viscous incompressible fluid past an infinite 
vertical porous plate embedded with highly porous medium with  
periodic permeability under constant heat flux in presence of  slip 
boundary conditions for velocity. The velocity and temperature 
are obtained analytically and their behaviour for different 
variations in the governing parameters are shown graphically 
and discuss numerically.The skin friction and  Nusselt number 
are also evolved analytically and tabulated numerically for 
variations in the said parameters .
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I. INTRODUCTION 

In the recent years flow of a viscous liquid through a 
porous medium has attracted the attention of a number of 
scholars because of its possible applications in many branches 
of science and technology like petroleum industry, seepage of 
water in river beds etc. In view of these applications, a series 
of investigations have been made by Raptis (1983), Reptis and 
Perdikis (1985) have studied unsteady flow problems through 
a highly porous medium over infinite porous plate. In all the 
studies mentioned above the  permeability of porous medium 
was assumed to be constant. Taking permeability variations 
into consideration Taneja and Jain  (2002) have studied the 
heat and mass transfer flow with radiation in two dimensional 
flow.  

Problems of constant heat flux have attracted the attention 
of fewer research workers. Singh and Jain (1993), Maharshi 
and Tak (2002) and some others have discussed the effects of 
constant heat flux. Recently Sarangi and Jose (2004) have also 
studied flow  through a porous medium on a vertical plate with 
constant heat flux. All above investigations are for two 
dimensional flow  problems. However, when the variations in 
permeability is transverse to the flow, the flow is essentially 
three dimensional. The problem of such a transverse effects 
was first considered by Gersten and Gross (1974). Acharya 
and Padhya (1983) investigated the free convection and mass 
transfer flow of a viscous fluid past a vertical porous plate 
with constant suction and  spanwise periodic varying plate 
temperature. Singh and Rana (1992), Ahamed and Sharma 
(1997) have studied the three dimensional viscous flow and 
heat transfer along a porous plate when sinusoidal transversal 

suction at the wall is applied. Recently  Harmindar S. Takhar 
(2007), Singh and Sharma (2002), K.D. Singh Jr. Dr., Rakesh 
Sharma and Khem Chand  (2000) have studied three 
dimensional viscous flow and heat transfer along porous plate 
with periodic permeability of the porous medium. 

 The studied reported herein analyzes  the effects of 
transverse periodic variations of the permeability under 
constant heat flux on three dimensional combined convective 
flow on a moving vertical plate in presence of slip flow 
regime. Solutions for velocity, temperature, skin friction and 
rate of heat transfer are analyzed for different variations in the 
governing parameters entered in the problem. It is being 
observed that increase in slip parameter decreases skin friction 
in the direction of x (τx). 

II. FORMULATION OF THE PROBLEM

We consider a flow embedded with highly porous medium 
of a viscous incompressible fluid past an  infinite plate with 
periodic permeability under constant heat flux in a slip flow 
regime. The plate lying vertically in x* - z* plane and y* axis 
is normal to it. The bounded plate is moving with velocity U0 

and moreover, free stream velocity of the flow is also assumed 
as U0. The permeability of porous medium is taken as 
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where *
0K is mean permeability of medium, �  is wave 

length of permeability distribution and ε is amplitude of 
permeability variations. Due to such permeability variations 
the problem is three dimensional. 

Let u*, v*, w* be the velocity components in x*, y* and z* 
directions respectively and T* be the temperature, the 
equations governing the flow in dimensional form are 
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Introducing the non dimensional quantities as 
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using these non dimensional quantities in equations (2) to (6), 
equations reduce to 
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with the boundary conditions  
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III. SOLUTION OF THE PROBLEM 

In order to solve the problem, we assume the solutions of 
the following form because the amplitude ε (<<  1) of the 
permeability variation is very small ,so the solution in the 
neighbourhood of the plate in the form 
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where f stands for u, v, w, p and θ. When ∈ = 0 equations (8) 
to (12) reduce to two dimensional free convection flow with 
constant suction at the plate, and given by 
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and the corresponding boundary conditions are 
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The solutions of the equations (15) to (19) are given as: 
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When ∈ ≠ 0, substituting equation (14) into the equations 
(8) to (12) and comparing the like powers of ε and neglecting 
higher powers of ε, we get the following equations 
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and the corresponding boundary conditions are 
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These are the partial differential equations which describe 
the three-dimensional flow through a porous medium. For 
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solution, we shall first consider equations (22), (24) and (25) 
being independent of the main flow and the temperature field. 

Let us assume v1, w1 and p1 as of the form 
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Equations (28) and (29) are chosen so that the equations of 
continuity (22) is satisfied. Substituting (28) and (29) in 
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On solving equations (31) and (32) under the boundary 
conditions (33), we get 
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For the main flow and the temperature field solution, we 
assume u1 and T1 as 
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On solving equations (39) and (40) using boundary 
conditions (41), we get the following results 
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IV. SKIN FRICTION AND NUSSELT NUMBER

After obtaining velocity field and temperature field, we 
now discuss  the x and z components of skin friction at the 
wall and the Nusselt number as: 
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where values of constants are given in Appendix. 

V. DISCUSSION AND CONCLUSION

In order to understand the solution physically, numerical 
calculations have been made for the velocity distribution, 
temperature distribution, x and z components of skin friction 
and the Nusselt in presence of  different parameters viz. 
Permeability parameters (K0), slip flow parameter (h1), suction 
parameter (α), Grashoff number (Gr), Reynolds number (Re), 
we have chosen air as a fluid (Pr = 0.71), fixing ∈ = 0.2 and z 
= 1/4. 
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In figure 1, velocity distribution is plotted against y on 
different values of  Re, α, h1, K0 and Gr. From the figure we 
observe that increase in Re, h1, Gr and K0 increases the 
velocity of the fluid while increase in suction parameter α
decreases the velocity of the fluid. It is further seen that 
increase in K0 increases the pore space in the medium and 
hence increases the flow velocity. In the way increases in slip 
velocity at the plate adds some additional velocity to the flow.   

Figure 1. Velocity distribution u plotted against y for different values of 
Re, α, h1, Ko and Gr. 

Temperature distribution is plotted against y in figure 2 for 
fixed values of Pr, ∈ and z. We observe that temperature of 
the fluid increases with the increase of Re, and decreases with 
the increase of K0 and α. 

Figure 2. Temperature distribution T plotted against y for different 
values of Re, α and h1. 

In figures 3 skin friction in the directions of x (τx) and 
figures 4 skin friction in the directions of z (τz)  are plotted 
against  Re respectively. From figure 3 it is observed that 
increase in h1, α and K0 decreases τz, while increase in Gr 
increases τx. Moreover from figure 4, we noted that increase in 
α and K0 increases τz. 

Figure 3. τx plotted against Re for different values of  α, h1, Ko and Gr. 

Figure 4. τz plotted against Re for different values of  Ko and α. 

Nusselt number (Nu) is plotted against Re on different
values of  α and K0 in figure 5. It is interesting to observed 
that for the case of constant heat flux at the plate, Nusselt 
number increases with both the parameters α and K0. 

Figure 5. Nussult number (Nu) plotted against Re for different values of  
Ko and α. 
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VI. APPENDIX
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